• 제목/요약/키워드: MEMS Process

검색결과 441건 처리시간 0.033초

MEMS 공진기의 고주파 응답해석을 위한 고효율 해석기 (A high Efficient Solver for High-Frequency Response Analysis of MEMS Resonators)

  • 고진환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.467-472
    • /
    • 2007
  • A modern MEMS resonator is a micro-scale structure operated over a high frequency range. In order to predict its resonant behavior in a design process, High-frequency response analysis (Hi-FRA) is demanded. Algebraic substructuring (AS) is known as a fast numerical technique to construct an eigenspace for FR and frequency sweep (FS) algorithm efficiently solves the frequency response system projected on the eigenspace. However, the existing FS algorithm using AS is developed for low-FRA, say over the range 1Hz-2KHz. In this work, we extend the FS algorithm using AS for FRA over an arbitrary frequency range. Therefore, it can be efficiently applied to systems operated at a high frequency, say over the range 230MHz-250MHz. The success of the proposed method is demonstrated by Hi-FRA of a checkerboard resonator.

  • PDF

MEMS 기술을 이용한 프로브 카드의 탐침 제작 (Fabrication of Tip of Probe Card Using MEMS Technology)

  • 이근우;김창교
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.361-364
    • /
    • 2008
  • Tips of probe card were fabricated using MEMS technology. P-type silicon wafer with $SiO_2$ layer was used as a substrate for fabricating the probe card. Ni-Cr and Au used as seed layer for electroplating Ni were deposited on the silicon wafer. Line patterns for probing devices were formed on silicon wafer by electroplating Ni through mold which formed by MEMS technology. Bridge structure was formed by wet-etching the silicon substrate. AZ-1512 photoresist was used for protection layer of back side and DNB-H100PL-40 photoresist was used for patterning of the front side. The mold with the thickness of $60{\mu}m$ was also formed using THB-120N photoresist and probe tip with thickness of $50{\mu}m$ was fabricated by electroplating process.

High-Q MEMS Spiral Inductor를 이용한 RF VCO (RF VCO with High-Q MEMS-based Spiral Inductor)

  • 김태호;김경만;서희원;황인석;김삼동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.987-990
    • /
    • 2003
  • This paper presents a cross-coupled RF VCO with high-Q MEMS-based spiral inductors. Since the use of high-Q inductors is critical to VCO design, MEMS-based spiral inductors with the Q-factor of nearly 22 are used for the RF VCO with an active cascode current source. The RF VCO circuits including spiral inductors have been designed and simulated in GaAs MMIC-MEMS process. The simulation results of the VCO circuits showed the phase noise of -180dBc/Hz at an offset frequency of 500KHz. The RF VCO circuit simulatinon used 2mA DC current and 3.3V supply.

  • PDF

Krylov 부공간에 근거한 모멘트일치법을 이용한 모델차수축소법 및 배열형 MEMS 공진기 주파수응답함수 계산에의 응용 (Model Order Reduction Using Moment-Matching Method Based on Krylov Subspace and Its Application to FRF Calculation for Array-Type MEMS Resonators)

  • 한정삼;고진환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.436-441
    • /
    • 2008
  • One of important factors in designing array-type MEMS resonators is obtaining a desired frequency response function (FRF) within a specific range. In this paper Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented to calculate the FRF of array-type resonators. By matching moments at a frequency around a specific range of the array-type resonators, required FRFs can be efficiently calculated with significantly reduced systems regardless of their operating frequencies. In addition, because of the characteristics of moment-matching method, a minimal order of reduced system with a specified accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations.

  • PDF

산화질소 검출용 마이크로 가스센서 제조공정 (MEMS-Based Micro Sensor Detecting the Nitrogen Oxide Gases)

  • 김정식;윤진호;김범준
    • 한국재료학회지
    • /
    • 제23권6호
    • /
    • pp.299-303
    • /
    • 2013
  • In this study, a micro gas sensor for $NO_x$ was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about $2mm{\times}2mm$. Indium oxide as a sensing material for the $NO_x$ gas was synthesized by a sol-gel process. The particle size of synthesized $In_2O_3$ was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance ($R_s=R_{gas}/R_{air}$), occurred at $300^{\circ}C$ with a value of 8.0 at 1 ppm $NO_2$ gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the $NO_2$ gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.

MEMS와 전자 패키징을 위한 마이크로 접합 공정 (Microjoining Process for MEMS and Electronic Packaging)

  • 유중돈
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.24-28
    • /
    • 2004
  • 마이크로 접합 공정은 미세 부품이나 박판의 접합에 사용되며, 이를 위해 다양한 공정이 개발되었다. 최근 MEMS(Micro Electro Mechanical System)활용 범위가 증가하고 있으며, MEMS에 사용되는 미세한 구조물의 접합이나 패키징에 접합 공정이 활용되고 있다. MEMS는 발전 단계이지만 전자 패키징(electronic packaging)은 성숙 단계인 반도체 산업에 사용되고 있다.(중략)

마이크로 다이레스 성형 시스템을 이용한 금속박판소재의 마이크로 패턴 성형 (Micro pattern forming on the metal thin foil Using micro dieless forming system)

  • 이혜진;이형욱;박진호;이낙규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2007
  • The MEMS (Micro Electro Mechanical Systems) process is used in a micro/nano pattern manufacturing method. This method is based on the lithography technology. But the MEMS process has some problems such as complicated process, long processing time and high production costs. Many researchers are doing research in substitute manufacturing method to work out a solution to these problems. In this paper, we apply a dieless incremental forming technology to a substitute method of MEMS process. This dieless forming technology is using in the commercial scale sheet forming such as a prototype of automobile sheet parts. 5-axes CNC (Computerized Numeric Control) method are applied in this system to get a micro-scale dieless forming results. These 5-axes system are composed of precision AC servo motor stages (4-axes) and PZT actuator (1-axis). A PZT actuator is used in a precision actuating axis because it can be operated in the nano scale stroke resolution. This micro dieless incremental forming system has the advantage of minimization in manipulating distance and working space. As equipment and tools become smaller in size, minute inertia force and high natural frequency can be obtained. Therefore, high precision forming performance can be obtained. This allows the factory to quickly provide the customer with goods because the manufacturing system and process are reduced. To construct this micro manufacturing system, many technologies are necessary such as high stiffness frame, high precision actuating part, structural analysis, high precision tools and system control. To achieve the optimal forming quality, the micro dieless forming system is designed and made with high stiffness characteristic.

  • PDF

Ni 캡의 전기도금 및 SnBi 솔더 Debonding을 이용한 웨이퍼 레벨 MEMS Capping 공정 (Wafer-Level MEMS Capping Process using Electrodeposition of Ni Cap and Debonding with SnBi Solder Layer)

  • 최정열;이종현;문종태;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.23-28
    • /
    • 2009
  • Si 기판의 캐비티 형성이 불필요한 웨이퍼-레벨 MEMS capping 공정을 연구하였다. 4인치 Si 웨이퍼에 Ni 캡을 전기도금으로 형성하고 Ni 캡 rim을 Si 하부기판의 Cu rim에 에폭시 본딩한 후, SnBi debonding 층을 이용하여 상부기판을 Ni 캡 구조물로부터 debonding 하였다. 진공증착법으로 형성한 SnBi debonding 층은 Bi와 Sn 사이의 심한 증기압 차이에 의해 Bi/Sn의 2층 구조로 이루어져 있었다. SnBi 증착 층을 $150^{\circ}C$에서 15초 이상 유지시에는 Sn과 Bi 사이의 상호 확산에 의해 eutectic 상과 Bi-rich $\beta$상으로 이루어진 SnBi 합금이 형성되었다. $150^{\circ}C$에서 유지시 SnBi의 용융에 의해 Si 기판과 Ni 캡 구조물 사이의 debonding이 가능하였다.

  • PDF

폴리실리콘 MEMS 구조물의 평탄화에 관한 연구 (A study of planarization in polysilicon MEMS structure)

  • 정문기;박성민;정재우;정해도;김형재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.362-363
    • /
    • 2005
  • The objectives of this paper are to achieve good planarization of the deposited film and to improve deposition efficiency of multi-layer structures by using surface-micromaching process in MEMS technology. Planarization characteristic of poly-Si film deposited on thin oxide layer with MEMS structures is evaluated with different slurries. Patterns used for this research have shapes of square, density, line, hole, pillar, and micro engine part. Advantages and disadvantages of CMP for MEMS structures are observed respectively by using the test patterns with structures larger than 1 um line width. Preliminary tests for material selectivity of poly-Si and oxide are conducted with two types of slurries: ILD1300 and Nalco2371. And then, the experiments were conducted based on the pretest.

  • PDF

엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용 (X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application)

  • 김강현;김종현;남효영;김수현;임근배
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.