• Title/Summary/Keyword: MDA-MB231

Search Result 279, Processing Time 0.023 seconds

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells (치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과)

  • Lee, Jin-Seok;Lee, Seung-Ho;Jang, Yong-Man;Lee, Jong-Dae;Lee, Byoung-Hee;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.949-955
    • /
    • 2011
  • [ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.

Antioxidant, Tyrosinase Inhibitory, and Anti-proliferative Activities of Gochujang Added with Cheonggukjang Powder Made from Sword Bean (작두콩 청국장 첨가 고추장의 항산화, tyrosinase 저해 및 암세포 증식 억제 효과)

  • Chang, Moon-Ik;Kim, Jae-Young;Kim, Un-Sung;Baek, Seung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.221-226
    • /
    • 2013
  • This study aimed to examine the antioxidant, tyrosinase inhibitory, and anti-proliferative activities (A549, G361, HT-29, and MDA-MB-231) of fermented gochujang (made from sword bean cheonggukjang powder (SBC) for 90 days. Gochujang was prepared by adding 0 (SBC 0), 2 (SBC 2), 5 (SBC 5), 8 (SBC 8) and 10% (SBC 10) levels with SBC, and all experiments were measured at diluted levels of 20, 50 and 100 times. The antioxidant activity and tyrosinase inhibitory effect demonstrated that SBC 10 increased approximately 1.2 and 1.1 times compared with SBC 0, respectively, at diluted levels of 50 and 100 times. The anti-proliferative effects of A549, G361, and HT-29 presented that SBC 10 were 2.8, 1.1, and 8.9 times higher compared with SBC 0, respectively, at diluted levels of 50, 20, and 100 times. In the case of MDA-MB-231, SBC 10 was 3.7 times higher compared with SBC 5 at diluted level of 20 times. As a result, we confirmed that SBC gochujang was improved for physiological activities and anti-proliferative effects.

Nutritional Properties and Biological Activities of Artemisia annua L. (개똥쑥의 영양적 특성 및 생리활성)

  • Ryu, Ji-Hyun;Kim, Ra-Jeong;Lee, Soo-Jung;Kim, In-Soo;Lee, Hyun-Ju;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • The nutritional properties and biological activities of leaves and stems of Gaeddongssuk (Artemisia annua L.) were investigated. Contents of moisture, crude lipid and crude protein were significantly higher in the leaves, and then ash, crude fiber and mineral were significantly higher in the stems. Contents of total phenols and flavonoids of leaves were about 2 fold higher than those of stems. Antioxidant activity was significantly increased in a dose-dependent manner; also, water and ethanol extracts of leaves were stronger than those of stems. Especially, DPPH radical scavenging activity, reducing power and tyrosinase inhibition activity were significantly higher in leaves extracts than stems extracts of Gaeddongssuk. But, ${\alpha}$-glucosidase inhibition activity was higher in stem than its leaves extract. In MTT assay by human breast adenocarcinoma cell line MCF-7 and MDA-MB-231, ethanol extracts of leaves showed the highest anticancer activity; the rates of growth inhibition were 76.26% and 52.59% on MCF-7 and MDA-MB-231 cells, at the concentration of $250\;{\mu}g$/mL, respectively. In conclusion, biological activities of extracts from Gaeddongssuk were dependent on the fiber, phenolic and flavonoid content.

IN-VITRO STUDY OF CO2 EXTRACT OF TERMINALIA CHEBULA IN BREAST CANCER CELL LINE MD-MBA-231

  • Chandil, Shachi;Bamoriya, Harikishan;More, D.B.
    • CELLMED
    • /
    • v.11 no.3
    • /
    • pp.16.1-16.7
    • /
    • 2021
  • Cancer is an abnormal growth of cells in body which leads to death. These cells are born due to imbalance in cell proliferation mechanism. In 2018, WHO released new statistics on cancer incidence, mortality, and prevalence worldwide i.e., GLOBOCAN 2018 estimates for 28 types of cancer in which more prevalence of cervix and breast cancer. According to survey, in India about 7.8 million cancer deaths and 11.5 million new cases arise in 2018, which will increase to 19.3 million new cases per year by 2025. Though breast cancer as such is not explained anywhere in Ayurvedic compendia, correlations can be done with the Stana Arbuda. Ayurveda, the ancient system of medicine came into existence 1000's of years ago with an objective of maintaining the health of people and treating diseases. Many herbs used in Ayurveda have been screened for activity against cancer and in-vitro and in-vivo studies have given promising leads. The plant, called as "Mother of Medicine", Haritaki has been extensively studied for its various ailments because of its extraordinary healing potency. Haritaki (Terminalia chebula Retz.), Family: Combretaceae have a great therapeutic value and is widely distributed in India. Dried fruit of Terminalia chebula contains high quantities phenolic compounds consist of ellagic acid, gallic acid and chebulic acid. The fruit extract of T. chebula is having different biological properties like anticancer, antioxidant, hepatic and renal protective activities etc. In this study, we focus on the use of CO2 extract of Terminalia chebula, on the breast cancer cell line MDA-MB-231. All tests proved that CO2 extract of Terminalia chebula containing active chemical component, therefore our experiment showed the positive results for CO2 extract of Terminalia chebula against breast cancer cell line cancer MDA-MB-231. The MTT assay results were used to evaluate the anti-cancer activity of the extract. The percentage of cell growth and cell viability were calculated from tabulated result values of MTT assay. Cell viability MTT assay also showed significant growth inhibition, at the same time statistical analysis of MTT assay also proved significant results.

Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells

  • Bae, Yun-Hee;Ryu, Jong Hyo;Park, Hyun-Joo;Kim, Kwang Rok;Wee, Hee-Jun;Lee, Ok-Hee;Jang, Hye-Ock;Bae, Moon-Kyoung;Kim, Kyu-Won;Bae, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.

Cytotoxic Effect of the Distilled Pine-Needle Extracts on Several Cancer Cell Lines in vitro (솔잎 수액 증류액의 암세포주에 대한 in vitro 세포독성)

  • Chung, Young-Jin;Bae, Myung-Won;Chung, Myoung-Il;Lee, Ji-Seon;Chung, Kyeong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.691-695
    • /
    • 2002
  • This study was performed to examine the cytotoxic effects of the distilled pine-needle extracts against several cancer cell lines. First, cell lines including mice leukemic cancer cell line (L1210), sarcoma 180 and human monocyte-like cancer cells (U937) were tested using XTT methods in uitro. Pine-needle extracts were prepared by pressing the pine needles and distilling it at below 98$^{\circ}C$ and then added to the growth medium in a final dilution of 10, 20, and 40 times. Growth of three kinds of cancer cells was significantly inhibited by more than 50% with the addition of the extracts. Fifty six to seventy six % of inhibition was shown with the 40 times dilution of the extracts. Greater inhibition was achieved with the 20 times dilution (81~90%) and the 10 times dilution (77~89%) of the extracts. Next, other human cancer cell lines including 3 kinds of breast cancer cell lines (T47D, MDA-MB-231 and MW7A) and one hepatoma cell line (SNU-354) were tested with the 20 times dilution of the extract. T47D and MDA-MB-231 cell lines showed lower inhibition (12%) with the addition of the extract. However, MH7A and SNU-354 cell lines showed 64% and 72% inhibition with the extract, respectively. These results suggest that the distilled pine-needle extracts have strong cytotoxic effect on certain cancer cell lines and the intensity of the effect may vary depending on the process of the pine needle.

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

Inhibition of Cell Growth by Anoikis in Various Human Cancer Cell Lines Treated with an Extract of Smilax china L. (토복령 추출물이 처리된 여러 종류의 사람 암세포주에서 아노이키스 세포 사멸에 의한 세포 성장의 억제)

  • Kim, Min-Jae;Kim, Hyeon-Ji;Kim, Moo-Gyeong;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.266-279
    • /
    • 2021
  • The present study examined the cytotoxic effects of a Smilax china L. extract (SCLE) in human cancer (A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74, and SNU-601) and normal MRC-5 fibroblasts, as well as in mesenchymal stem cells derived from dental tissue (DSC). The 50% inhibitory concentration (IC50) values for SCLE were significantly (p<0.05) lower in the cancer cell lines (A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74 and SNU-601) than in the MRC-5 and DSC cells. Cell growth was significantly (p<0.05) more inhibited in the cancer cell lines treated with 200 ㎍/ml SCLE than in the normal MRC-5 and DSC, and anoikis-like floating cell morphology was observed in the SCLE-treated cancer cells. The cells detached by SCLE treatment were retrieved daily and assayed for viability and telomerase activity. Cells retrieved at 4 days showed significantly decreased viability and telomerase activity (p<0.05), as well as apoptosis-like abnormal morphology, when compared to cells retrieved in the previous 3 days. The ratio of apoptosis and cells in the G1 phase was significantly (p<0.05) increased in the A-549, AGS, and MCF-7 cancer cells treated with SCLE for 4 days compared to untreated controls. However, after SCLE treatment, cell adhesion was not increased by application of an inhibitor of the associated protein kinase (ROCK) that mainly contributes to the increase in cell attachment. This suggests that the cellular detachment by SCLE is probably controlled by a Rho-independent mechanism(s). These observations indicate that SCLE readily induces anoikis in cancer cells and could serve as a potent agent for cancer chemotherapy.

NDRG2 Controls COX-2/PGE2-Mediated Breast Cancer Cell Migration and Invasion

  • Kim, Myung-Jin;Kim, Hak-Su;Lee, Soo-Hwan;Yang, Young;Lee, Myeong-Sok;Lim, Jong-Seok
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.759-765
    • /
    • 2014
  • N-myc downstream-regulated gene 2 (NDRG2), which is known to have tumor suppressor functions, is frequently down-regulated in breast cancers and potentially involved in preventing the migration and invasion of malignant tumor cells. In the present study, we examined the inhibitory effects of NDRG2 overexpression, specifically focusing on the role of cyclooxygenase-2 (COX-2) in the migration of breast cancer cells. NDRG2 overexpression in MDA-MB-231 cells inhibited the expression of the COX-2 mRNA and protein, the transcriptional activity of COX-2, and prostaglandin $E_2$ ($PGE_2$) production, which were induced by a treatment with phorbol-12-myristate-13-acetate (PMA). Nuclear transcription factor-${\kappa}B$ (NF-${\kappa}B$) signaling attenuated by NDRG2 expression resulted in a decrease in PMA-induced COX-2 expression. Interestingly, the inhibition of COX-2 strongly suppressed PMA-stimulated migration and invasion in MDA-MB-231-NDRG2 cells. Moreover, siRNA-mediated knockdown of NDRG2 in MCF7 cells increased the COX-2 mRNA and protein expression levels and the PMA-induced COX-2 expression levels. Consistent with these results, the migration and invasion of MCF7 cells treated with NDRG2 siRNA were significantly enhanced following treatment with PMA. Taken together, our data show that the inhibition of NF-${\kappa}B$ signaling by NDRG2 expression is able to suppress cell migration and invasion through the down-regulation of COX-2 expression.

6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone Induces Caspase-8- and -9-mediated Apoptosis in Human Cancer Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Ristee, Chantrarat;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2637-2641
    • /
    • 2013
  • 6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone (DMMA), a purified compound from Polyalthia cerasoides roots, is cytotoxic to various cancer cell lines. The aims of this study were to demonstrate the type of cancer cell death and the mechanism(s) involved. DMMA inhibited cell growth and induced apoptotic death in human leukemic cells (HL-60, U937, MOLT-4), human breast cancer MDA-MB231 cells and human hepatocellular carcinoma HepG2 cells in a dose dependent manner, with $IC_{50}$ values ranging between 20-55 ${\mu}M$. DMMA also decreased cell viability of human peripheral blood mononuclear cells. The morphology of cancer cells induced by the compound after staining with propidium iodide and examined under a fluorescence microscope was condensed nuclei and apoptotic bodies. Mitochondrial transmembrane potential (MTP) was decreased after 24h exposure in all five types of cancer cells. DMMA-induced caspase-3, -8, and -9 activity was strongly induced in human leukemic HL-60 and MOLT-4 cells, while in U937-, MDA-MB231- and HepG2-treated cells there was partial induction of caspase. In conclusion, DMMA-induced activation of caspase-8 and -9 resulted in execution of apoptotic cell death in human leukemic HL-60 and MOLT-4 cell lines via extrinsic and intrinsic pathways.