• Title/Summary/Keyword: MCF-

Search Result 1,083, Processing Time 0.026 seconds

Transforming Growth Factor-$\beta$ (TGF)-$\beta$, Induces Invasion and Migration of MCF10A Human Breast Epithelial Cells

  • Kim, Eun-Sook;Kim, Mi-Sung;Moon, Aree
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.165.1-165.1
    • /
    • 2003
  • Transforming growth factor (TGF)-$\beta$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. In this study, we examined the effect of TGF-$\beta$ on invasion and motility of MCF10A human breast epithelial cells. TGF-$\beta$-induced migration and invasive phenotype of the parental MCF10A cells in a dose-dependent manner. Activity of MMP-2 promoter was increased by TGF-b, suggesting that the TGF-$\beta$-induced invasive phenotype may possibly be mediated by MMP-2 rather than MMP-9. (omitted)

  • PDF

Screening of Korean Medicinal Herbs for Hormonal Activities using Recombinant Yeast Assay and MCF-7 Human Breast Cancer Cells (재조합효모와 MCF -7 사람유방암세포주를 이용한 한국산 약용식물의 호르몬 활성 스크리닝)

  • Yang Se-Ran;Hong Hee-Do;Cho Sung-Dae;Ahn Nam-Shik;Jung Ji-Won;Park Joon-Suk;Jo Eun-Hye;Hwang Jae-Woong;Sun bo;Park Jung-Ran;Lee Seong-Hun;Jung Ji-Youn;Choi Changsun
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • To investigate whether there are estrogenic and anti-estrogenic activities in various medicinal herbs and discover prominent chemo-preventive agents, we screened and compared the ethanol extracts of 9 plants through the recombinant yeast assay and MCF-7 human breast cancer cell assay, In recombinant yeast assay, seven medicinal herbs showed estrogenicity, and four extracts showed androgenecity. In MCF-7 proliferation assay, the growth of MCF-7 cells was inhibited by eight extracts before and even after co-treatment with bisphenol A. It is interesting that the extracts of Glycyrrhiza uralensis, Cassia tora, Syringa velutina, Zingiber officinale, Malva verticillata, and Panax ginseng C.A. Meyer exhibited inhibitory effects as phytoestrogens in estrogen-responsive human breast cancer cells. This study suggests that some Korean medicinal herbs might be considered as phytoestrogens and be useful to further analyze those plants which contain the estrogenic effect in order to identify the active principles.

Anticarcinogenic Responses of MCF-7 Breast Cancer Cells to Conjugated Linoleic Acid (CLA) (식이성 Conjugated Linoleic Acid (CLA)가 유선암 세포(MCF-7)에서의 항암효과에 미치는 영향)

  • 문희정;이순재;박수정;장유진;이명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.418-427
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA, C18:2 $\omega$6), which is found abundantly in dairy products and meats. This study was peformed to investigate the anticarcinogenic effect of CLA in MCF-7 breast cancer cells. MCF-7 cell were treated with LA and CLA at the various concentrations of 15, 30, 60, 120 UM each. After incubation for 48 and 72 hours, cell proliferation, fatty acids incorporation into cell, peroxidation and activities of antioxidant enzymes were measured. Postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) were measured for the eicosanoids metabolism. There was no cell growth differences in both of LA and CLA treated MCF-7 cells at 48 hr incubation. Compared to LA, cell growth was decreased by CLA treatment according to increasing concentration at longer incubation times, respectively (p<0.05). Both of LA and CLA was incorporated into the cellular lipids 22~54% higher than in control but LA incorporation was not so linear as CLA according to concentration. Arachidonic acid (C20:4, $\omega$6) was synthesized after treatment of LA but did not in CLA, respectively. The lipid peroxide concentration in LA 120 $\mu$M group increased as 1.7 times as that in CLA 120 $\mu$M treated. The activities of antioxidant enzymes such as glutathione peroxidase and glutathione reductase were increased by the supplementation with CLA 120 $\mu$M at 72 hr incubation (p<0.001) compared to LA, otherwise activity of superoxide dismutase was not different in both. PGE$_2$ and TXA$_2$ levels were lower in condition of CLA treatments according to lower levels of arachidonic acids than those in LA treated group, respectively. Overall, the dietary CLA might change the MCF-7 cell growth by the changes of cell composition, production of lipid peroxide, activities of antioxidant enzymes and eicosanoid synthesis compared to dietary LA.

Study on the Estrogen Receptor Mediated Toxicity of Cadmium and Protective Effects of Antioxidant (에스트로겐 수용체를 통한 카드뮴 독성 및 항산화제에 의한 독성경감에 관한 연구)

  • Kim Tae-Sung;Kang Tae-Seok;Kang Ho-Il;Moon Hyun-Ju;Kang Il-Hyun;Lee Young-Joo;Choi Eun-Hee;Hong Jin-Tae;Han Soon-Young;Hong Jin-Hwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • Cadmium, a human carcinogen, can induce toxicity in various cell lines and organs. Despite extensive research, the mechanisms of cadmium-induced cell toxicity and estrogenic potential in human are not clear. This study was performed to investigate cadmium-induced toxicity on human breast cancer cells: MCF-7 cells, an estrogen receptor (ER) positive breast cancer cells, and MDA-MB-231 cells, an ER negative breast cancer cells. MCF-7 cells was proved to be more sensitive than the other cell lines (IC50 = $50\;{\mu}M$ at MCF-7 cells and $120{\mu}M$ at MDA-MB-231). The expression of JNK and AP-1 transcription factors such as c-Jun and c-Fos dependent transcription were increased by cadmium treatment. Inhibition of ER activation by ER antagonist (tamoxifen or ICI 182,780) significantly recovered the viablity and inhibited apoptotic cell death. This suggested that cadmium-induced cell death in ER (+) cells was mediated by JNK/AP-1 pathway and this pathway was more stimulated by ER activated by cadmium. Co-treatment of antioxidants such as selenium (Se), butylated hydroxyanisole (BHA), glutathione (GSH), or N-acetyl-L-cysteine (NAC) recovered the cadmium-induced cell death in MCF-7 cells. Cadmium-induced lipid peroxidation was decreased by GSH, NAC, or BHA in MCF-7 cells. The expression of SOD protein was decreased by cadmium ($100{\mu}M$) but recovered by GSH, NAC, BHA, or Se. Our data showed that the cadmium-induced cell toxicity in human breast cancer cells could be protected by the antioxidants (Se, BHA, NAC, GSH, or NAC) and ER antagonist (tamoxifen or ICI 182,780). Therefore, toxicity of cadmium in breast cancer were mediated by oxidative stress and $ER{\alpha}$.

  • PDF

Anticancer Activity on Ethanolic Extract of the Masou Salmon (Oncorhynchus masou) in vitro and in vivo (산천어(Oncorhynchus masou) 에탄올 추출물의 in vitro 및 in vivo에서 항암활성)

  • Oh, Hyun-Taek;Chung, Mi-Ja;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.142-145
    • /
    • 2009
  • The cytotoxic activity against human cancer cells and anti-tumor effect in Balb/c mice of a 70% ethanol extract from masou salmon (MSE) was investigated. The cancer cell lines including human breast adenocarcinoma (MCF-7), human lung carcinoma (A549), human hepatoblastoma (HepG2), human gastric carcinoma (AGS), human cervical adenocarcinoma (HeLa) and transformed primary human embryonal kidney (293) exposed to MSE decreased cell viability as indicated by the MTT assay. The MSE shows significant cytotoxicity on MCF-7, A549, HepG2, AGS and HeLa cells, and are more active than 293 cells. The treatment with 1 mg/mL MSE resulted in 9.2%, 12.7%, 16.6%, and 16.9% cell survival against A549, MCF-7, HepG2, and AGS cells, respectively. Moreover, anticancer effect in vivo of MSE was tested in the animal system using Balb/c mice transplanted sarcoma-180 cells. MSE showed inhibition of tumor growth and the rate of inhibition was 44.7% and 55.7% at the 25 mg/kg body weight and 250 mg/kg body weight, respectively. Thus, we suggest that MSE could be a beneficial material for human cancer prevention.

Chrysanthemum zawadskii var. latilobum Extracts Inhibits of TPA-induced Invasion by Reducing MMP-9 Expression Via the Suppression of NF-${\kappa}B$ Activation in MCF-7 Human Breast Carcinoma Cells (유방암세포에서 구절초 추출물의 암전이 억제 효과)

  • Hwang, Jin Ki;Kim, Jeong Mi;Kim, Mi Seong;Kim, Ha Rim;Park, Yeon Ju;You, Yong Ouk;Kwon, Kang Beom;Lee, Young Rae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.782-788
    • /
    • 2013
  • Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae), colloquially known "Gujulcho" in Korea, has been used in traditional medicine for the treatment of various diseases, including cough, common cold, bladder-related disorders, gastroenteric disorders, hypertension, and inflammatory diseases, such as pneumonia, bronchitis, pharyngitis, and rheumatoid arthritis (RA) However, the effect of Chrysanthemum zawadskii var. latilobum on breast cancer invasion is unknown. In this study, we investigated the inhibitory effect of Chrysanthemum zawadskii var. latilobum extract (CZE) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced matrix metalloproteinase-9 (MMP-9) expression and cell invasion, as well as the molecular mechanisms involved in MCF-7 cells. CZE were not cytotoxic up to 100 ${\mu}g/ml$ concentration in the MCF-7 cell line. CZE decreased MMP-9 expression. TPA substantially increased NF-${\kappa}B$ DNA binding activity. Pre-treatment with CZE inhibited TPA-stimulated NF-${\kappa}B$ binding activity and NF-${\kappa}B$ related protein expression. To identify invasion ability of MCF-7 cells decreased by CZE, we used martrigel invasion assay. As a result, it is significantly decreased cell invasion. These results indicate that CZE-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells. Chrysanthemum zawadskii var. latilobum may have potential value in restricting breast cancer metastasis.

Curcumin and its Analogues (PGV-0 and PGV-1) Enhance Sensitivity of Resistant MCF-7 Cells to Doxorubicin through Inhibition of HER2 and NF-kB Activation

  • Meiyanto, Edy;Putri, Dyaningtyas Dewi Pamungkas;Susidarti, Ratna Asmah;Murwanti, Retno;Sardjiman, Sardjiman;Fitriasari, Aditya;Husnaa, Ulfatul;Purnomo, Hari;Kawaichi, Masashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.179-184
    • /
    • 2014
  • Chemoresistance of breast cancer to doxorubicin is mediated mainly through activation of NF-kB and over expression of HER2. Curcumin and its analogues (PGV-0 and PGV-1) exert cytotoxic effects on T47D breast cancer cells. Suppression of NF-kB activation is suggested to contribute to this activity. The present study aimed to explore the effects of curcumin, PGV-0, and PGV-1 singly and in combination with doxorubicin on MCF-7/Dox cells featuring over-expression of HER2. In MTT assays, curcumin, PGV-0, and PGV-1 showed cytotoxicity effects against MCF-7/Dox with IC50 values of $80{\mu}M$, $21{\mu}M$, and $82{\mu}M$ respectively. These compounds increased MCF-7/Dox sensitivity to doxorubicin. Cell cycle distribution analysis exhibited that the combination of curcumin and its analogues with Dox increased sub G-1 cell populations. Curcumin and PGV-1 but not PGV-0 decreased localization of p65 into the nucleus induced by Dox, indicating that activation of NF-kB was inhibited. Molecular docking of curcumin, PGV-0, and PGV-1 demonstrated high affinity to HER2 at ATP binding site. This interaction were directly comparable with those of ATP and lapatinib. These findings suggested that curcumin, PGV-0 and PGV-1 enhance the Dox cytotoxicity to MCF-7 cells through inhibition of HER2 activity and NF-kB activation.

Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;de la Cruz, Joseph;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4809-4813
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

The Effect of 12-O-Tetradecanoylphorbol-13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells (3,3'-Diindolylmethane(DIM)이 Human Mammary Epithelial Cell에서 12-O-tetradecanoylphorbol-13-acetate에 의해 유도된 COX-2 발현에 미치는 영향)

  • Park, So Young;Shim, Jae-Hoon;Kim, Jong-Dae;YoonPark, Jung Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1701-1707
    • /
    • 2012
  • 3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol, which is present in cruciferous vegetables and has been reported to have anti-carcinogenic properties. An abnorrmally elevated level of cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of carcinogenesis. To investigate the mechanism by which DIM exhibits anti-carcinogenic effects, we investigated the effects of DIM on COX-2 expression in MCF-10A human mammary epithelial cells treated with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). DIM inhibited TPA-induced COX-2 expression and suppressed the synthesis of prostaglandin $E_2$, one of the major products of COX-2. Nuclear factor-kappa B ($NF-{\kappa}B$) is a transcription factor known to play a role in regulation of COX-2 expression. Treatment of MCF-10A cells with TPA increased nuclear translocation of phospho-p65, with the maximal levels being reached at 1 hour, while DIM inhibited the TPA-induced nuclear translocation of phospho-p65. Overall, we demonstrated that DIM suppresses phorbol ester-induced $PGE_2$ production and COX-2 expression in MCF-10A cells. The reduction in COX-2 levels by DIM maybe mediated through inhibition of $NF-{\kappa}B$ signaling.

RELATIONSHIPS BETWEEN CRANIAL BASE AND FACIAL STRUCTURES IN CHILDREN WITH CLASS I AND III MALOCCLUSIONS AGED FROM 7 TO 12 YEARS : A CEPHALOMETRIC STUDY (I급과 III급 부정교합을 보이는 어린이의 두개저의 성장변화에 관한 연구)

  • Lee, Mi-Sook;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.95-105
    • /
    • 2001
  • The present study was designed to compare morphological and structural relationships between basicranial measurements such as MCF angulation (Ar-SE-ptm), saddle angle (N-S-Ba, N-S-Ar) and facial structures including types of malocclusion. Twenty six children with Class III whose longitudinal headfilms were available from 7 to 12-year-old, and also 26 cross-sectional headfilms at each ages of 8, 9, 10 and 11 with Class I were selected for the investigation. Cephalometric measurements such as Ar-SE-ptm, N-S-Ba, N-S-Ar, N-SE-Ar, SNA, SNB, N-S/PM vert, CP/PM vert, $\underline{1}/FH$ plane, and $N-perp/\underline{1}$ were measured. Morphologic relationships and pattern of changes in facial structures in relation to the changes of MCF and saddle angle in both malocclusion types were analysed statistically employing ANOVA, t-test and Pearson correlation. Results suggest that the MCF rather than the saddle angle in children with Class I and III is more closely related with various facial structures and with their changes. It may be, therefore, suggested that the MCF be one of the biologically meaningful measurements in determining structural relationships between cranial base and facial complex including types of malocclusion. In addition, the MCF and its correlated facial structures in children with Class III, interestingly, showed somewhat marked changes between the ages of 9 and 11.

  • PDF