• Title/Summary/Keyword: MALDI-TOF MS/MS

Search Result 280, Processing Time 0.029 seconds

Endophytic Bacillus sp. CY22 from a Balloon Flower (Platycodon grandiflorum) Produces Surfactin Isoforms

  • Cho, Soo-Jeong;Hong, Su-Young;Kim, Jin-Young;Park, Sang-Ryeol;Kim, Min-Keun;Lim, Woo-Jin;Shin, Eun-Chule;Kim, Eun-Ju;Cho, Yong-Un;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.859-865
    • /
    • 2003
  • Surfactin is a mixture of cyclic lipopeptides built from variants of a heptapeptide and a ${\beta}-hydroxy$ fatty acid produced by several strains of Bacillus sp. Surfactin isoforms produced by endophytic Bacillus sp. CY22 from a balloon flower were isolated and characterized. It was found that the purified surfactin had three isoforms with protonated masses of m/z 1,008, 1,022, and 1,036, and different structures in combination with Na, K, Ca ions using MALDI-TOF MS, ESI-MS/MS, and ICP MS, respectively. In the MS/MS analysis, the isolated surfactin had the identical amino acid sequence (LLVDLL) and hydroxy fatty acids (with 13 to 15 carbons in length), even though isolated from different Bacillus strains. The sfp22 gene, required for producing the surfactin, consisted of an open reading frame (ORF) of 675 bp encoding 224 amino acid residues with a signal peptide of 20 amino acids. The predicted amino acid sequence of sfp22 was very similar to that of Ipa-8.

Proteome Data Analysis of Hairy Root of Panax ginseng : Use of Expressed Sequence Tag Data of Ginseng for the Protein Identification (인삼 모상근 프로테옴 데이터 분석 : 인삼 EST database와의 통합 분석에 의한 단백질 동정)

  • Kwon, Kyung-Hoon;Kim, Seung-Il;Kim, Kyung-Wook;Kim, Eun-A;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Yang, Deok-Chun;Hur, Cheol-Goo;Yoo, Jong-Shin;Park, Young-Mok
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • For the hairy root of Panax ginseng, we have got mass spectrums from MALDI/TOF/MS analysis and Tandem mass spectrums from ESI/Q-TOF/MS analysis. While mass spectrum provides the molecular weights of peptide fragments digested by protease such as trypsin, tandem mass spectrum produces amino acid sequence of digested peptides. Each amino acid sequences can be a query sequence in BLAST search to identify proteins. For the specimens of animals or plants of which genome sequences were known, we can easily identify expressed proteins from mass spectrums with high accuracy. However, for the other specimens such as ginseng, it is difficult to identify proteins with accuracy since all the protein sequences are not available yet. Here we compared the mass spectrums and the peptide amino acid sequences with ginseng expressed sequence tag (EST) DB. The matched EST sequence was used as a query in BLAST search for protein identification. They could offer the correct protein information by the sequence alignment with EST sequences. 90% of peptide sequences of ESI/Q-TOF/MS are matched with EST sequences. Comparing 68% matches of the same sequences with the nr database of NCBI, we got more matches by 22% from ginseng EST sequence search. In case of peptide mass fingerprinting from MALDI/TOF/MS, only about 19% (9 proteins of 47 spots) among peptide matches from nr DB were correlated with ginseng EST DB. From these results, we suggest that amino acid sequencing using tandem mass spectrum analysis may be necessary for protein identification in ginseng proteome analysis.

Identification of Upregulated APOA1 Protein of Chicken Liver in Pullorum Disease (추백리가 감염된 닭의 간에서 발현이 증가하는 APOA1 단백질의 확인)

  • Jung K. C.;Lee Y. J.;Yu S. L.;Lee J. H.;Jang B. K.;Koo Y. B.;So H. K.;Choi K. D.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The aim of this study was to investigate differentially expressed proteins between normal chicken liver and chicken liver inffeted by Salmonella pullorum. 2-dimensional electrophoresis (2DE) and mass spectrometry (MS) were used to identify the proteins. More than 300 protein spots were detected on silver stained 2DE gels using pH 3$\~$10 gradients. The most outstanding protein spot was further analyzed by MALDI-TOF MS and protein database using the Mascot search engine. The protein was finally identified as APOAI (Apolipoprotein AI). Based on the known function of the APOAI, this gene acts protective action against the accumulation of platelet thrombin at the site of vascular damage for the pullorum disease. Therefore APOAI protein, identified in this study, can be a valuable biomarker in relation to the pullorum disease in chicken.

Mass-Spectral Identification of an Extracellular Protease from Bacillus subtilis KCCM 10257, a Producer of Antibacterial Peptide Subtilein

  • SONG HYUK-HWAN;GIL MI-JUNG;LEE CHAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1054-1059
    • /
    • 2005
  • An extracellular protease was identified from Bacillus subtilis KCCM 10257 by N-terminal sequencing and mass spectral analysis. The molecular mass of the extracellular protease was estimated to be 28 kDa by SDS-PAGE. Sequencing of the N-terminal of the protease revealed the sequence of A(G,S,R)QXVPYG(A)V(P,L)SQ. The N-terminal sequence exhibited close similarity to the sequence of other proteases from Bacillus sp. A mass list of the monoisotopic peaks in the MALDI-TOF spectrum was searched after peptide fragmentation of the protease. Six peptide sequences exhibiting monoisotopic masses of 1,276.61, 1,513.67, 1,652.81, 1,661.83, 1,252.61, and 1,033.46 were observed from the fragmented protease. These monisotopic masses corresponded to the lytic enzyme L27 from Bacillus subtilis 168, and the Mowse score was found to be 75. A doubly charged Top product (MS) at a m/z of 517.3 exhibiting a molecular mass of 1034.6 was further analyzed by de novo sequencing using a PE Sciex QSTAR Hybrid Quadropole-TOF (MS/MS) mass spectrometer. MS/MS spectra of the Top product (MS) at a m/z of 517.3 obtained from the fragmented peptide mixture of protease with Q-star contained the b-ion series of 114.2, 171.2, 286.2, 357.2, 504.2, 667.4, 830.1, and 887.1 and y-ion series of 147.5, 204.2, 367.2, 530.3, 677.4, 748.4, 863.4, and 920.5. The sequence of analyzed peptide ion was identified as LGDAFYYG from the b- and y-ion series by de novo sequencing and corresponded to the results from the MALDI-TOF spectrum. From these results the extracellular protease from Bacillus subtilis KCCM 10257 was successfully identified with the lytic enzyme L27 from Bacillus subtilis 168.

Identification of Protein Markers Specific for Papillary Renal Cell Carcinoma Using Imaging Mass Spectrometry

  • Na, Chan Hyun;Hong, Ji Hye;Kim, Wan Sup;Shanta, Selina Rahman;Bang, Joo Yong;Park, Dongmin;Kim, Hark Kyun;Kim, Kwang Pyo
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.624-629
    • /
    • 2015
  • Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.

Isolation and Characterization of Major Glycosphingolipid from Rice Bran Extract (쌀겨 추출물로부터 스핑고당지질의 분리와 구조결정)

  • Mitsutake, Susumu;Okada, Tadashi;Kang, Byoung-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.72-76
    • /
    • 2007
  • In order to examine the biofunctions of glycosylceramide which is representative of sphingolipid, monoglycosylceramide (cerebroside) was isolated from rice bran extract. Crude glycosylceramides were isolated in large quantities and promptly by flash system column chromatography from rice bran extract, and purified by normal-phase HPLC using an evaporative light-scattering detector. One major cerebroside was obtained by HPLC used as an eluent consisting of chloroform, methanol and water (99:11:1, v/v/v), and the constituents were analyzed by MALDI/TOF-MS, FAB-MS, GC and 600 MHz $^1$H-NMR. The component sugar was estimated to be glucose. In the ceramide, the fatty acid component consist was 2-hydroxy arachidic acid. The long-chain base component was sphinga-4,8-dienine.

Verification with of High Efficiency Chemical Binding System of a Physiologically Active Radioisotope Using ESI-TOF/Ms System (고효율의 ESI-TOF/Ms 시스템을 이용한 생리활성 항체와 방사성동위원소 표지용 착화제의 결합 검증)

  • Joh, Eun-Ha;Hong, Young Don;Choi, Sun Ju
    • YAKHAK HOEJI
    • /
    • v.57 no.6
    • /
    • pp.400-405
    • /
    • 2013
  • In this study, we measured the complex efficiency of a physiologically active antibody, a chelator and radiosiotopes using the ESI-TOF/Ms system for develop good radiopharmaceuticals. For a precise measurement, TLC is a low accuracy method. Loading of same amount of sample is difficult for each test, and work to quantify accurately the results obtained through TLC cannot be afforded compared to the use of other analytical instruments. The method of analysis using a mass spectrometer is capable of a mass analysis of proteins for quantitative analysis. The conjugates of the chelator (CHX-A- DTPA) and the antibody (IgG) were separated through MWCO, and were analyzed using ESI-TOF and MALDI-TOF mass spectrometry. The analysis using MALDI-TOF is roughly divided into measurements on mass spectrometry. When conjugating a small molecular weight of CHX-A-DTPA and a large molecular weight of IgG, distinguishing the peak of the conjugate and the peak of IgG was difficult. However, an ESI-TOF mass spectrometer system is capable of an analysis of mass by decentralizing the IgG. It is utilized as a technique for measuring the metabolic processes during conjugation and the stability evaluation of radiopharmaceuticals. When establishing this technique, the accuracy of the overall radiophar-maceutical analysis is expected to be able to be improved.

Application of Malononitrile Derivatization Method for Structural Glycomics Study in Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

  • Ahn, Yeong-Hee;Yoo, Jong-Shin
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.83-86
    • /
    • 2001
  • Structural analyses of oligosaccharide-malononitrile derivatives were conducted by matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) analysis in positive ion mode. The malononitrile derivatives of oligosaccharides, which were developed for highly sensitive detection of multi-component oligosaccharides by negative ion electrospray ionization mass spectrometry (ESI MS), were detected by positive-ion MALDI with the detection limit of 2 pmol level from the crude derivatization sample. The used matrix affected drastically the analytical results of oligosaccharide-malononitrile derivative by matrix-assisted laser desoprtion/ionization mass spectrometry (MALDI MS). The malononitrile derivatization of oligosaccharide also affect the patterns of MALDI-PSD spectra and give much more structural information than the free oligosaccharide.

  • PDF

Differential protein expression in avian liver in response to invasion by Salmonella gallinarum

  • Lee, Gang-Deog;Cho, In-Hee;So, Hyun-Kyung;Koo, Yong-bum;Lee, Jun-heon;Choi, Kang-Duk
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.37-38
    • /
    • 2004
  • Salmonella gallinarum is a pathogen that is capable of causing disease in Korean native chicken. Although Salmonella gallinarum is important world-wide pathogens of poultry, little is understood of the mechanisms of pathogenesis of Salmonella gallinarum in the chicken. This study was to investigate chicken liver proteins affected by infection of Salmonella gallinarum in Korean native chicken. The differentially expressed proteins of chicken livers were identified by using 2-dimensional electro- phoresis (2D-E) and mass spectrometry (MS). We detected more than 300 protein spots on silver stained 2D gels using pH 3∼10 gradients. Three differentially expressed protein spots were analyzed by MALDI-TOF MS and MS/MS. The obtained MS and MS/MS data were searched against a protein database using the Mascot search engine. Further researches on the identified proteins can give valuable information of mechanism of pathogenesis in chicken.

  • PDF