• 제목/요약/키워드: MALDI TOF

검색결과 468건 처리시간 0.023초

돼지유래 Salmonella속 균의 동정을 위한 MALDI TOF MS 활용 (MALDI TOF MS for the identification of Salmonella spp. from swine)

  • 손준형;전우진;이영미;김선수
    • 한국동물위생학회지
    • /
    • 제39권4호
    • /
    • pp.247-251
    • /
    • 2016
  • Salmonella is one of the most common bacteria that causes heavy losses in swine industry and major causative pathogen of food poisoning in public health. Various methods for the identification of Salmonella such as Gram staining, agglutination test, enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) have been used. Several studies have demonstrated that Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI TOF) Mass Spectrometry (MS) identification is an efficient and inexpensive method for the rapid and routine identification of isolated bacteria. In this study, MALDI TOF MS could provide rapid, accurate identification of Salmonella spp. from swine compared with end point PCR and real time PCR.

Simple measurement the chelator number of antibody conjugates by MALDI-TOF MS

  • Shin, Eunbi;Lee, Ji Woong;Lee, Kyo Chul;Shim, Jae Hoon;Cha, Sangwon;Kim, Jung Young
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.54-58
    • /
    • 2017
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) is one of the powerful methods that enable analysis of small molecules as well as large molecules up to about 500,000 Da without severe fragmentation. MALDI-TOF MS, thus, has been a very useful an analytical tool for the confirmation of synthetic molecules, probing PTMs, and identifying structures of a given protein. In recent nuclear medicine, MALDI-TOF MS liner ion mode helps researcher calculate the average number of chelator(or linkage) per an antibody conjugate, such as DOTA-(or DFO-) trastuzumab for labeling a medical radioisotope. This simple technique can be utilized to improve the labeling method and control the quality at the development of antibody-based radiopharmaceuticals, which is very effected to diagnosis and therapy for in vivo tumor cells, with radioisotopes like $^{89}Zr$, $^{64}Cu$, and 177Lu. To minimize the error, MALDI-TOF MS measurement is repeatedly performed for each sample in this study, and external calibration is carried out after data collection.

Reliable Identification of Bacillus cereus Group Species Using Low Mass Biomarkers by MALDI-TOF MS

  • Ha, Miyoung;Jo, Hyeon-Ju;Choi, Eun-Kyeong;Kim, Yangsun;Kim, Junsung;Cho, Hyeon-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.887-896
    • /
    • 2019
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based pathogen identification relies on the ribosomal protein spectra provided in the proprietary database. Although these mass spectra can discern various pathogens at species level, the spectra-based method still has limitations in identifying closely-related microbial species. In this study, to overcome the limits of the current MALDI-TOF MS identification method using ribosomal protein spectra, we applied MALDI-TOF MS of low-mass profiling to the identification of two genetically related Bacillus species, the food-borne pathogen Bacillus cereus, and the insect pathogen Bacillus thuringiensis. The mass spectra of small molecules from 17 type strains of two bacilli were compared to the morphological, biochemical, and genetic identification methods of pathogens. The specific mass peaks in the low-mass range (m/z 500-3,000) successfully identified various closely-related strains belonging to these two reference species. The intensity profiles of the MALDI-TOF mass spectra clearly revealed the differences between the two genetically-related species at strain level. We suggest that small molecules with low molecular weight, 714.2 and 906.5 m/z can be potential mass biomarkers used for reliable identification of B. cereus and B. thuringiensis.

우유 및 유제품 중 미생물 동정을 위한 MALDI-TOFMS활용 (MALDI-TOF MS System for the Identification of Microorganisms in Milk and Dairy Products)

  • 김현욱;함준상;설국환;한상하;박범영;오미화
    • Journal of Dairy Science and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.131-137
    • /
    • 2012
  • Rapid and reliable identification of microorganisms is a key for tracing the relationship between the target bacteria and related infectious diseases. Various identification methods such as classical phenotypic analysis, numerical taxonomic analysis, and DNA sequencing have been widely used to classify microorganisms in milk and dairy products. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) identifies targeted bacteria in milk and milk products. Several studies have demonstrated that MALDI-TOF MS identification is an efficient and inexpensive method for the rapid and routine identification of isolated bacteria. MALDI-TOF MS could provide accurate identification of bacteria in milk and milk products at the serotype or strain level and enable antibiotic resistance profiling within minutes.

  • PDF

Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS

  • Hong, Jangmi;Kim, Taehee;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • 제5권2호
    • /
    • pp.49-51
    • /
    • 2014
  • The effectiveness of tertiary matrices composed of the combination of three common matrices (dihydrobenzoic acid (DHB), ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA)) was compared with that of single or binary matrices in the analysis of polyethylene glycol (PEG) polymers ranging from 1400 to 10000 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A tertiary matrix of 2,5-DHB+CHCA+SA was the most effective in terms of S/N ratios. CHCA and CHCA+SA produced the highest S/N ratios among the single matrices and the binary matrices, respectively. The improvement observed when using a tertiary matrix in analyses of PEG polymers by MALDI-TOF MS is believed to be due to the uniform morphology of the MALDI sample spots and synergistic effects arising from the mixture of the three matrix materials.

MALDI-TOF 질량분석기를 이용한 식품중독균 확인시험 적용 (Application of MALDI-TOF mass spectrometry-based identification of foodborne pathogen tests to the Korea Food Standard Codex)

  • 하미영;손은정;최은정
    • 한국식품과학회지
    • /
    • 제48권5호
    • /
    • pp.437-444
    • /
    • 2016
  • 최근 건강과 위생에 대한 소비자의 의식 향상으로 인해 농수축산 분야를 비롯한 식품의 가공 유통 분야에서도 식품의 안전성 확보를 위한 시험 검사가 실시되고 있고, HACCP과 같은 식품안전관리 프로그램의 조기 도입을 유도하고 있어 식품중독균에 대한 검사량이 증가하고 있다. 이에 따른 신속, 정확하고 대량의 시료를 처리할 수 있는 식품중독균 검사의 필요성이 증가되고 있다. 국내 식품 미생물의 확인시험방법은 전통적인 미생물 동정법인 그램 염색 등과 같은 형태학적 특성과 생화학적 분석에 의해서 주로 확인되는데, 확인 과정이 복잡하고 장시간이 소요된다. 이를 극복하기 위한 새로운 미생물 동정법인 MALDI-TOF 질량분석기반 미생물 동정법을 식품의 식품중독균 검사에 적용하기 위해 식품공전에서 주로 검사하는 식품중독균 10종에 대한 질량 패턴 데이터를 국내 질량분석 데이터베이스인 MicroID에 적용하였다. 표준 균주와 식품중독균이 검출된 시료에서 분리한 균으로 비교했을 때 질량분석기반 미생물 동정은 현재 사용되고 있는 생화학적 분석결과와 일치한 결과를 보여주었다. 또한, 식품중독균을 포함한 국내 미생물 균주를 이용해서 구축한 데이터베이스, MicroID는 기존의 상용화된 해외 MALDI-TOF 질량분석 데이터베이스 Biotyper와 동등 이상의 정확도를 나타내었다. 국내 식품관련 미생물에 대한 질량스펙트럼을 추가하여 데이터베이스를 지속적으로 확장시키면 신속 정확한 미생물 동정법으로 자리매김할 수 있을 것이다.

나노물질을 이용한 질량분석 기술 개발동향 (Mass spectrometry based on nanomaterials)

  • 박종민;노주윤;김문주;변재철
    • 세라미스트
    • /
    • 제21권3호
    • /
    • pp.249-269
    • /
    • 2018
  • In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Characterization of Synthetic Polyamides by MALDI-TOF Mass Spectrometry

  • Choi, Hae-Young;Choe, Eun-Kyung;Yang, Eun-Kyung;Jang, Sung-Woo;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2354-2358
    • /
    • 2007
  • MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.

MALDI-TOF Analysis of Binding between DNA and Peptides Containing Lysine and Tryptophan

  • Lee, Seonghyun;Choe, Sojeong;Oh, Yeeun;Jo, Kyubong
    • Mass Spectrometry Letters
    • /
    • 제6권3호
    • /
    • pp.80-84
    • /
    • 2015
  • Here, we demonstrate the use of MALDI-TOF as a fast and simple analytical approach to evaluate the DNA-binding capability of various peptides. Specifically, by varying the amino acid sequence of the peptides consisting of lysine (K) and tryptophan (W), we identified peptides with strong DNA-binding capabilities using MALDI-TOF. Mass spectrometric analysis reveals an interesting novel finding that lysine residues show sequence selective preference, which used to be considered as mediator of electrostatic interactions with DNA phosphate backbones. Moreover, tryptophan residues show higher affinity to DNA than lysine residues. Since there are numerous possible combinations to make peptide oligomers, it is valuable to introduce a simple and reliable analytical approach in order to quickly identify DNA-binding peptides.

Investigation of Transglutaminase-Induced Peptide Cross-Linking by Matrix-Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry

  • 김희준;임효섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권11호
    • /
    • pp.1299-1302
    • /
    • 1999
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used to demonstrate cross-linking of peptides induced by transglutaminase. The presence of ε-( Υ-glutamyl)lysine isopeptide cross-link in the acid hydrolysate of the cross-linking reaction mixture was also demonstrated by MALDI-TOF-MS without prior separation. MALDI-TOF-MS quickly provided peptide mass maps after pronase digestion of the cross-linked peptide adduct, which enabled us to monitor the hydrolytic sequence. Pronase appears to preferentially hydrolyze peptide bonds distant from the cross-link before hydrolyzing peptide bonds around the cross-link. The results suggest that pronase digestion followed by MALDI-TOF-MS could be used for determination of amino acid sequence around a modification site.