• Title/Summary/Keyword: M2M Model

Search Result 7,924, Processing Time 0.039 seconds

Investigation into Electrical Characteristics of Logic Circuit Consisting of Modularized Monolithic 3D Inverter Unit Cell

  • Lee, Geun Jae;Ahn, Tae Jun;Lim, Sung Kyu;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.137-142
    • /
    • 2022
  • Monolithic three-dimensional (M3D) logics such as M3D-NAND, M3D-NOR, M3D-buffer, M3D 2×1 multiplexer, and M3D D flip-flop, consisting of modularized M3D inverters (M3D-INVs), have been proposed. In the previous M3D logic, each M3D logic had to be designed separately for a standard cell library. The proposed M3D logic is designed by placing modularized M3D-INVs and connecting interconnects such as metal lines or monolithic inter-tier-vias between M3D-INVs. The electrical characteristics of the previous and proposed M3D logics were simulated using the technology computer-aided design and Simulation Program with Integrated Circuit Emphasis with the extracted parameters of the previously developed LETI-UTSOI MOSFET model for n- and p-type MOSFETs and the extracted external capacitances. The area, propagation delay, falling/rising times, and dynamic power consumption of the proposed M3D logic are lower than those of previous versions. Despite the larger space and lower performance of the proposed M3D logic in comparison to the previous versions, it can be easily designed with a single modularized M3D-INV and without having to design all layouts of the logic gates separately.

CoMFA and CoMSIA Analysis on the Selective Fungicidal Activity of N-phenyl-D-phenylthionocarbamate Analogues against Resistant and Sensitive Gray Mold (Botrytis cinerea) (저항성 및 감수성 잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenylthionocarbamate 유도체들의 선택적인 살균활성에 관한 CoMFA 및 CoMSIA 분석)

  • Soung, Min-Gyu;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.138-143
    • /
    • 2007
  • The relationships between three dimensional quantitative structure and activity relationships (3D-QSARs) for the selective fungicidal function between N-phenyl substituents of N-phenyl-O-phenyl-thionocarbamate derivatives analogues and their the fungicidal activities against resistant (RBC) and sensitive (SBC) gray mold (Botrytis cinerea) were studied quantitatively using CoMFA and CoMSIA methods. The statistical values of optimized CoMSIA (M7) model were better ($r^2$ & $q^2=CoMSIA{\gg}CoMFA$) than that of CoMFA (M5) model. And the factor influencing of the selective between the fungicidal activity against RBC and SBC was dependent on electrostatic field of CoMFA (M5) model. Therefore, it is predicted that, from the CoMSIA contour maps of CoMSIA (M7) model, the selectivity will be improved by the H-bond donor that is with negatively charged favored group at meta-position on the N-phenyl ring.

Application of Big Data and Machine-learning (ML) Technology to Mitigate Contractor's Design Risks for Engineering, Procurement, and Construction (EPC) Projects

  • Choi, Seong-Jun;Choi, So-Won;Park, Min-Ji;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.823-830
    • /
    • 2022
  • The risk of project execution increases due to the enlargement and complexity of Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial revolution era, there is an increasing need to utilize a large amount of data generated during project execution. The design is a key element for the success of the EPC plant project. Although the design cost is about 5% of the total EPC project cost, it is a critical process that affects the entire subsequent process, such as construction, installation, and operation & maintenance (O&M). This study aims to develop a system using machine-learning (ML) techniques to predict risks and support decision-making based on big data generated in an EPC project's design and construction stages. As a result, three main modules were developed: (M1) the design cost estimation module, (M2) the design error check module, and (M3) the change order forecasting module. M1 estimated design cost based on project data such as contract amount, construction period, total design cost, and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and cost over-run due to design errors and change orders through unstructured text data extracted from engineering documents. A validation test was performed through a case study to verify the model applied to each module. It is expected to improve the risk response capability of EPC contractors in the design and construction stage through this study.

  • PDF

Phytoremediation and Bioremediation of Land Contaminated by Hydrocarbons: Modeling and Field Applications

  • Sung, Kijune;Corapcioglu, M.Yavuz
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.18-21
    • /
    • 2002
  • Phytoremediation which uses plants to enhance the bioremediation through stimulation of microbial activity and root uptake, has been a topic of increasing interest. Mathematical model were developed that can be applied to various bioremediation methods in the unsaturated zone, especially phytoremediation, for simulating the fate and transport of contaminants under field conditions. A 2-year field study was conducted using 72 (1.5m long and 0.1 m diameter) column lysimeters with four treatments: Johnsongrass; wild rye grass; a rotation of Johnsongrass and wild rye grass; and unplanted fallow conditions. The developed model represented the fate and transport of contaminant both in vegetated and unplanted soils satisfactorily for field applications. Parameters related to the contaminant concentration in the water phase were the main parameters determining the contaminant fate in the vadose zone and indicated that the bioavailability can be the most important factor in the success of phytoremediation as well as bioremediation applications.

  • PDF

A HARMS-based heterogeneous human-robot team for gathering and collecting

  • Kim, Miae;Koh, Inseok;Jeon, Hyewon;Choi, Jiyeong;Min, Byung Cheol;Matson, Eric T.;Gallagher, John
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • Agriculture production is a critical human intensive task, which takes place in all regions of the world. The process to grow and harvest crops is labor intensive in many countries due to the lack of automation and advanced technology. Much of the difficult, dangerous and dirty labor of crop production can be automated with intelligent and robotic platforms. We propose an intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, from agricultural fields. This paper describes a novel robotic organization enabling humans, robots and agents to work together for automation of gathering and collection functions. The focus of the research is a model, called HARMS, which can enable Humans, software Agents, Robots, Machines and Sensors to work together indistinguishably. With this model, any capability-based human-like organization can be conceived and modeled, such as in manufacturing or agriculture. In this research, we model, design and implement a technology application of knowledge-based robot-to-robot and human-to-robot collaboration for an agricultural gathering and collection function. The gathering and collection functions were chosen as they are some of the most labor intensive and least automated processes in the process acquisition of agricultural products. The use of robotic organizations can reduce human labor and increase efficiency allowing people to focus on higher level tasks and minimizing the backbreaking tasks of agricultural production in the future. In this work, the HARMS model was applied to three different robotic instances and an integrated test was completed with satisfactory results that show the basic promise of this research.

A Study on the Development of Hydroelastic Experimental Techniques of Very Large Box-shaped Floating Structures with Shallow Draft (천흘수 부유식 해양 구조물의 유탄성 모형시험 기법 개발에 관한 연구)

  • H. Shin;I.K. Park;H.S. Shin;S.K. Kim;Y.S. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.64-76
    • /
    • 1999
  • In this paper hydroelastic experimental techniques of very large floating offshore structures are suggested based on the model test carried out in the UOU Ocean Engineering Wide Tank. The prototype is a box-shaped floating structure with length of 300m, breadth of 60m, depth of 2m and draft of 0.5m and longitudinal bending rigidity as $4.87{\times}10^{10}kgm^2$. The scale ratio is 1/42.857. The model is realized by aluminum square pipes with the section dimension of $20mm{\times}20mm$. The numbers of longitudinal and transverse pipes are 7 and 35 respectively. Heave motions at selected points are measured with potentiometers and bending moments with strain gages.

  • PDF

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

A Study on the Distortional Analysis of Curved Steel Box Girders and Determination of Diaphragm Spacing (곡선 강상자형 거더의 뒤틀림 해석 및 격벽간격산정)

  • Koo, Min Se;Yoon, Wo Hyun;Lee, Ho Kyoung;Kim, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 2003
  • A 3-dimensional model of curved steel box girder bridges without diaphragm was presented. This model yielded results that were consistent with those of the parameter analysis using the BEF and Ritz methods. Se veralmodels with diaphragms were analyzed to estimate the appropriate diaphragm spacing. In case of 50m span, models A-10, A-20, A-30, B-10, B-20, and B-30 were found to have 5(8.3m), 7(6.25m), 8(5.5m), 4(10m), 6(7.1m), and 7(6.25m) diaphragms, respectively. In addition, a formula that presents the ratio of distortional stress to bending stresswas created from the results of the 3-dimensional FEM model analysis.

Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy

  • Wooil Kim;Minje Lim;You Joung Jang;Hyun Jung Koo;Joon-Won Kang;Sung-Ho Jung;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1054-1065
    • /
    • 2021
  • Objective: We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods: From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results: During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and -9.4 mL, and 6.0 mL and -3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion: Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.

A Study on the Implementation of Global SCM(Supply Chain Management) Model using Electronic Commerce Infrastructure (전자상거래 인프라를 활용한 글로벌 SCM(Supply Chain Management) 모델 구현에 관한 연구)

  • ;;Ishiguro Eiji
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.3
    • /
    • pp.121-137
    • /
    • 2002
  • SCM(Supply Chain Management) have been introduced in many companies for integrated management and improvement of business process. Recently, as internet and e-business concept are spread globally, the SCM concept is expanded from one internal company process to inter-company process, it makes a Global SCM concept. In this paper, we discuss the implementation of the Global SCM concept using e-business infrastructure, and propose SCM portal models. Four types of the SCM portal model are discussed, which are forecasting information sharing model, e-Marketplace-typed model, collaboration model and logistics information sharing model. The major concept of the SCM portal is to share information of supply chain process, it provide merits of scale to company. The result of this paper can be summarized as follows : First, the information sharing is very useful in the Global SCM. Second, the e-business infrastructure, especially e-Marketplace can be usefully used for implementation of SCM portal. Third, the M2M(Market to Market) function of e-Marketplace is a major function for implementing SCM portal.

  • PDF