Acknowledgement
This research was supported by the Basic Science Research Program, through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1A2C2003843).
References
- Baxi AJ, Restrepo CS, Vargas D, Marmol-Velez A, Ocazionez D, Murillo H. Hypertrophic cardiomyopathy from A to Z: genetics, pathophysiology, imaging, and management. Radiographics 2016;36:335-354 https://doi.org/10.1148/rg.2016150137
- Klarich KW, Attenhofer Jost CH, Binder J, Connolly HM, Scott CG, Freeman WK, et al. Risk of death in long-term follow-up of patients with apical hypertrophic cardiomyopathy. Am J Cardiol 2013;111:1784-1791 https://doi.org/10.1016/j.amjcard.2013.02.040
- Towe EC, Bos JM, Ommen SR, Gersh BJ, Ackerman MJ. Genotype-phenotype correlations in apical variant hypertrophic cardiomyopathy. Congenit Heart Dis 2015;10:E139-E145 https://doi.org/10.1111/chd.12242
- Kunkala MR, Schaff HV, Nishimura RA, Abel MD, Sorajja P, Dearani JA, et al. Transapical approach to myectomy for midventricular obstruction in hypertrophic cardiomyopathy. Ann Thorac Surg 2013;96:564-570 https://doi.org/10.1016/j.athoracsur.2013.04.073
- Kim H, Park JH, Won KB, Yoon HJ, Park HS, Cho YK, et al. Significance of apical cavity obliteration in apical hypertrophic cardiomyopathy. Heart 2016;102:1215-1220 https://doi.org/10.1136/heartjnl-2015-309121
- Hang D, Schaff HV, Ommen SR, Dearani JA, Nishimura RA. Combined transaortic and transapical approach to septal myectomy in patients with complex hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 2018;155:2096-2102 https://doi.org/10.1016/j.jtcvs.2017.10.054
- Tang Y, Song Y, Duan F, Deng L, Ran J, Gao G, et al. Extended myectomy for hypertrophic obstructive cardiomyopathy patients with midventricular obstruction. Eur J Cardiothorac Surg 2018;54:875-883 https://doi.org/10.1093/ejcts/ezy203
- Nguyen A, Schaff HV, Nishimura RA, Geske JB, Dearani JA, King KS, et al. Apical myectomy for patients with hypertrophic cardiomyopathy and advanced heart failure. J Thorac Cardiovasc Surg 2019 Apr [Epub]. https://doi.org/10.1016/j.jtcvs.2019.03.088
- Maron MS, Rowin EJ, Olivotto I, Casey SA, Arretini A, Tomberli B, et al. Contemporary natural history and management of nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2016;67:1399-1409 https://doi.org/10.1016/j.jacc.2016.01.023
- Parachuri VR, Adhyapak SM. The case for surgical myectomy in hypertrophic cardiomyopathy: is strategic planning the key to success? J Thorac Cardiovasc Surg 2017;154:1687-1688 https://doi.org/10.1016/j.jtcvs.2017.02.032
- Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 2017;10:171-184 https://doi.org/10.1016/j.jcmg.2016.12.001
- Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC, et al. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 2008;136:1098-1099 https://doi.org/10.1016/j.jtcvs.2008.03.055
- Yang DH, Park SH, Kim N, Choi ES, Kwon BS, Park CS, et al. Incremental value of 3D printing in the preoperative planning of complex congenital heart disease surgery. JACC Cardiovasc Imaging 2020 Aug [Epub]. https://doi.org/10.1016/j.jcmg.2020.06.024
- Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg 2016;22:238-240 https://doi.org/10.1093/icvts/ivv320
- Guo HC, Wang Y, Dai J, Ren CW, Li JH, Lai YQ. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study. J Thorac Dis 2018;10:867-873 https://doi.org/10.21037/jtd.2018.01.55
- Hermsen JL, Burke TM, Seslar SP, Owens DS, Ripley BA, Mokadam NA, et al. Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J Thorac Cardiovasc Surg 2017;153:132-140 https://doi.org/10.1016/j.jtcvs.2016.08.007
- Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg 2010;37:302-306 https://doi.org/10.1016/j.ejcts.2009.07.046
- Yang DH, Kang JW, Kim N, Song JK, Lee JW, Lim TH. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation 2015;132:300-301 https://doi.org/10.1161/CIRCULATIONAHA.115.015842
- Gregory S, Timms D, Pearcy MJ, Tansley G. A naturally shaped silicone ventricle evaluated in a mock circulation loop: a preliminary study. J Med Eng Technol 2009;33:185-191 https://doi.org/10.1080/03091900802184072
- Russo M, Koenigshofer M, Stoiber M, Werner P, Gross C, Kocher A, et al. Advanced three-dimensionally engineered simulation model for aortic valve and proximal aorta procedures. Interact Cardiovasc Thorac Surg 2020;30:887-895 https://doi.org/10.1093/icvts/ivaa026
- Lezhnev AA, Ryabtsev DV, Hamanturov DB, Barskiy VI, Yatsyk SP. Silicone models of the aortic root to plan and simulate interventions. Interact Cardiovasc Thorac Surg 2020;31:204-209 https://doi.org/10.1093/icvts/ivaa068
- Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-542 https://doi.org/10.1161/hc0402.102975
- Smooth-On, Inc. EcoflexTM 00-10. Smooth-on Web site. https://www.smooth-on.com/products/ecoflex-00-10/. Accessed September 22, 2020
- Gheorghe AG, Fuchs A, Jacobsen C, Kofoed KF, Mogelvang R, Lynnerup N, et al. Cardiac left ventricular myocardial tissue density, evaluated by computed tomography and autopsy. BMC Med Imaging 2019;19:29
- Farooqi KM, Saeed O, Zaidi A, Sanz J, Nielsen JC, Hsu DT, et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail 2016;4:301-311 https://doi.org/10.1016/j.jchf.2016.01.012
- Jacobs S, Grunert R, Mohr FW, Falk V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg 2008;7:6-9 https://doi.org/10.1510/icvts.2007.156588
- Chung P, Heller JA, Etemadi M, Ottoson PE, Liu JA, Rand L, et al. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding. J Vis Exp 2014;88:e51745
- Thompson AJ, Dearani JA, Johnson JN, Schaff HV, Towe EC, Palfreeman J, et al. What is the role of apical ventriculotomy in children and young adults with hypertrophic cardiomyopathy? Congenit Heart Dis 2018;13:617-623 https://doi.org/10.1111/chd.12618
- Kotkar KD, Said SM, Dearani JA, Schaff HV. Hypertrophic obstructive cardiomyopathy: the Mayo Clinic experience. Ann Cardiothorac Surg 2017;6:329-336 https://doi.org/10.21037/acs.2017.07.03
- Said SM, Schaff HV, Abel MD, Dearani JA. Transapical approach for apical myectomy and relief of midventricular obstruction in hypertrophic cardiomyopathy. J Card Surg 2012;27:443-448 https://doi.org/10.1111/j.1540-8191.2012.01475.x