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Abstract: The risk of project execution increases due to the enlargement and complexity of 

Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial 

revolution era, there is an increasing need to utilize a large amount of data generated during project 

execution. The design is a key element for the success of the EPC plant project. Although the design 

cost is about 5% of the total EPC project cost, it is a critical process that affects the entire 

subsequent process, such as construction, installation, and operation & maintenance (O&M). This 

study aims to develop a system using machine-learning (ML) techniques to predict risks and 

support decision-making based on big data generated in an EPC project's design and construction 

stages. As a result, three main modules were developed: (M1) the design cost estimation module, 

(M2) the design error check module, and (M3) the change order forecasting module. M1 estimated 

design cost based on project data such as contract amount, construction period, total design cost, 

and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and 

cost over-run due to design errors and change orders through unstructured text data extracted from 

engineering documents. A validation test was performed through a case study to verify the model 

applied to each module. It is expected to improve the risk response capability of EPC contractors 

in the design and construction stage through this study. 
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1. INTRODUCTION 

In the Engineering, Procurement, and Construction (EPC) contract, the owner wants to 

complete the construction quickly and take economic profits by operating the facility [1]. As the 

competition in the global EPC market intensifies, the liability of the EPC contractor increases 

because the owner intends to pass the project risk to the contractor. The design information 

provided by the owner at the bidding stage of the EPC plant project is the minimum information 

for project budget and schedule calculation and consists of schematic drawings and quantity 

information of the entire facility. 

This study aims to support decision-making for risk response when carrying out EPC plant 

projects. It also seeks to develop a system consisting of a design cost analysis module (M1), design 
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error analysis module (M2), and design change analysis module (M3) by applying machine 

learning algorithms based on project data generated during the stages of the EPC project. Each of 

these three modules is intended to estimate design costs and predict the severity of schedule delay 

and cost overrun owing to design errors and design changes. 

For this study, data from about 43 offshore and 29 onshore EPC projects carried out in the past 

were collected and analyzed from the perspective of big data to apply machine learning. Pre-

processing such as statistical analysis, data refinement, and scaling of collected data was performed 

to apply the machine learning model suitable for each module. A machine learning model was 

developed for each module. After that, the performance of each model was verified, and the optimal 

model was suggested. 

2. LITERATURE REVIEW 

In the EPC plant project, design is a critical factor for the project’s success. Recently, research 

applying machine learning algorithms, AI, and big data to the EPC industry is increasingly 

attributed to the extensive and complexation of the EPC industry. Khadtare and Smith [2] advanced 

a civil construction cost estimation model by using Fractal-COSYSMO system engineering. In 

addition, Marzouk and Elkadi [3] used an artificial neural network to create a cost estimation model 

for a water treatment plant, and Pesko and Mucenski [4] applied a machine-learning (ML) 

algorithm to calculate the civil construction cost estimation model. Elfahham [5] predicted and 

estimated the construction cost index using neural regression analysis, networks, and time series. 

However, the plant industry has limitations in that ML, and quantitative statistical analysis is 

relatively slow compared to other sectors. According to a study by Kaiser [6], design cost accounts 

for about 5% of the total project cost. Still, the impact on the entire project is very high and affects 

all processes such as construction and installation, maintenance, and repair. This study presents a 

model that predicts the accuracy of EPC project design cost using machine learning techniques and 

also predicts the severity of schedule delays and cost overruns due to design errors or design 

changes. This study proposes a model to predict the accuracy of design cost by applying ML 

techniques and to forecast the severity of schedule delay and cost overrun caused by design errors 

and design changes. 

3. RESEARCH PROCESSES 

Each of the three modules of this study was conducted as a four-step process. First, data 

corresponding to each module was collected. Next, we developed a data frame for ML model 

application through pre-processing. Third, this paper developed a suitable model for each module’s 

objective and recommended an optimal model. Finally, it conducted performance tests for 

validation. The processes of this study are shown in Figure 1. 

 
Figure 1. Research Processes 

4. MATERIALS & METHODS 
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4.1. Design Cost Estimation Module 

Estimating design cost in an EPC project is one of the important decision-making factors for 

winning a project as a task performed in the bidding stage, which is the early stage of the project. 

The design cost analysis module (M1) assists the bidder's decision-making by forecasting design 

cost through the application of ML techniques. The range of design costs expected in this study is 

limited to the man-hour required for the design stage.  

4.1.1. Data Collection and Pre-processing 

For the M1, each construction type has about 1500 project information data such as 

construction location, contract type, project period, and quantity, including the number of design 

man-hours and design costs which were collected from 72 EPC projects. These data were organized 

and converted into a database, as shown in Figure 2 below. 

 

Figure 2. Composition of Collected Data 

Data transformation and feature scaling were performed in the data pre-processing for design 

cost prediction. Data transformation refers to the process of modifying the structure or format of 

data to be applied to ML models [7]. First, to use the ML algorithm, string data was converted into 

integer data, and continuous variables were discretized, normalized, and standardized. Next, 

feature scaling was performed on numerical variables to improve the ML model’s performance. 

Feature scaling aims to normalize the range of each feature, and it can support the optimal 

performance of the algorithm [8]. In this module, four scalers were used: Standard Scaler, MinMax 

Scaler, Robust Scaler, and MaxAbs Scaler. In order to validate the performance of the four scalers, 

methods such as Scikit Learn and K-fold Cross-Validation were used. The number of Cross-

Validation was applied ten times.  

As for performance evaluation indicators, 𝑅2and Mean Absolute Percentage Error (MAPE) 

were used. MAPE is an indicator of how much the predicted error rate is used to check the 

reliability of the regression model [9]. It can be interpreted that the closer the value of 𝑅2 is to 1, 

the higher the linear correlation is, and the lower the value of MAPE, the smaller the error. As a 

result of the Validation Result, the Standard Scaler showed the best results. So, a Standard Scaler 

was used in M1. Table 1 shows the validation result for the four types of scalers. 

Table 1. A Validation Result for Four types of Scaling  

Scaling Type 
Scikit-Learn with Cross-Validation K-fold Cross-Validation (Fold: 10) 

1 R2 2 MAPE (%) R2 MAPE (%) 

Standard Scaler 0.76 21.6 0.7 22.89 

MinMax Scaler 0.76 21.6 0.39 35.98 

Robust Scaler 0.7 27.42 0.75 21.48 

MaxAbs Scaler 0.29 51.25 0.32 38.61 
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1 R2: Coefficient of determination in linear regression analysis  2 MAPE: Mean absolute percentage error 

4.1.2. Modeling and Validation 

In the M1, since the target variable of design cost data is numerical, a regression analysis 

algorithm constructed a prediction model. For engineering man-hour prediction, regression 

analysis algorithms such as Random Forest, Decision Tree, Gradient Boosting, and Elastic Net 

were applied as prediction models. The evaluation of the prediction model for design man-hour 

prediction applied two methods (Scikit-Learn and K-fold Cross-Validation) similar to scaling 

verification. 

Since the target variable value of the data to be evaluated is significant, verification was 

performed by applying the predictive performance evaluation index to MAPE. The MAPE formula 

for the validation of the Design Cost Prediction Model is shown in Eq.(1). 

𝑀𝐴𝑃𝐸 =  | 
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑠𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 )

𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡
  |  ×  100%                    (1) 

As a result of Scikit-Learn and K-fold Cross-Validation, Decision Tree showed the lowest 

prediction error rate. Decision Tree also shows better results in MAPE, although the 𝑅2 value of 

Random Forest is slightly higher than Decision Tree. Decision Tree with the lowest prediction 

error rate can be an optimal model with the best performance. Therefore, the decision tree algorithm 

was recommended for M1. Table 2 shows the validation results of four algorithms for design cost 

analysis. 

Table 2. A Comparison Result of Validation for Design Cost Prediction Algorithm  

Applied Algorithm 

Scikit-Learn & Cross-Validation 

with STD Scaler 

Cross-Validation (Fold: 10) 

with STD Scaler  

1 R2 2 MAPE (%) R2 MAPE (%) 

Random Forest 0.79 17.4 0.85 15.04 

Decision Tree 0.77 17.3 0.82 14.39 

Gradient Boosting 0.72 20.87 0.84 15.35 

Elastic Net 0.76 21.6 0.69 22.17 
1 R2: Coefficient of determination in linear regression analysis 2 MAPE: Mean absolute percentage error 

4.2. Design Error Check Module 

The design error analysis module (M2) aims to minimize project risk by predicting the severity 

of design errors and the severity of schedule delays to determine design errors. Also, we developed 

an ML-based algorithm that classifies design errors with a high frequency of occurrence, analyzes 

the severity of design errors according to their causes, and predicts the severity of schedule delays. 

4.2.1. Data Collection and Pre-processing 

For the M2, approximately 9000 design error data such as design error type, crash report, cause 

of design error, and project information were collected from 72 EPC projects over the past 20 

years. In particular, the design error reference data is a design drawing error of the information 

providing EPC company or data standardized based on specifics corresponding to the entire design 

cycle, including details pointed out by the owner during the 3D Modeling Review (30%, 60%, 
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90%). In addition, to classify the severity of design errors, standardized data were referred to and 

classified into error causes and error types, design delay severity, and design error severity, as 

shown in Table 3.  

Table 3. Classification of Design Error Type and Severity 

Class Sub-Class Description 

Design Delay Impact 

shorter than 26 

months 

Safe 0 ≤ Delay Days < 2 

Marginal 2 ≤ Delay Days ≤ 15 

Serious 15 < Delay Days 

longer than 26 

months 

Safe 0 ≤ Delay Days < 3 

Marginal 3 ≤ Delay Days ≤ 25 

Serious 25 < Delay Days 

 A Safe Simple modification within Scope 

Design Error Impact B Marginal Cost Impact for 2 Disciplines 

 C Serious Cost Impact for more than 2 Disciplines 

In the M2, the data pre-processing proceeded with feature scaling and feature selection. First, 

feature scaling was performed to adjust the distribution of data values to improve the ML model’s 

performance for design error analysis. In this module, data cleansing was carried out, by changing 

data structures, correcting missing values, removing duplicate values, removing outliers, and 

linking data. As in the design cost analysis module above, the data was scaled through four scalers. 

The scaler showing optimal performance was selected. 

Because the reason for design errors is unstructured data, it requires feature selection for 

analysis. In order to select features from text variables, text data formalization and integer 

vectorization must be preceded in advance [10]. Formalization was performed by extracting 

headwords, tokenization, and stopword processing, and as a result, text data of design errors were 

converted into data usable for analysis. In addition, unbalanced data were rearranged through 

integer vectorization. In this study, integer vectorization means that the pre-processed English and 

Korean text data are arranged in high frequency to low frequency, and then integers are assigned 

first from low-frequency words to generate vectors. In this way, principal component analysis was 

applied to many integer vectors to select features from text variables, such as the reason for design 

errors. 

4.2.2. Modeling and Validation 

In the M2, design error data is a categorical variable. So, the model was constructed using 

classification analysis algorithms such as Random Forest, Decision Tree, XGBoost, and Gradient 

Boosting. Also, prediction and classification algorithms were used as reference models. Because a 

predictive model is a supervised learning model like a classification model, it learns from labeled 

training data. Still, unlike a classification model, it uses labeled training data to express the 

correlation between features and labels as a function [11]. 

The M2 was tested by applying four classification algorithms to predict delay severity and 

design error severity due to design errors. ML models were tested using a standard scaler. Of the 

total data, 80% was used as training data, 20% of data was used as evaluation data, and 10-fold 

Cross-Validation was used. In addition, to evaluate the performance of the design error analysis 

model, the F-measure measurement method using the harmonized average of precision and recall 



828 

 

was used. The F-measure evaluation method is mainly used for performance evaluation of ML 

using classification algorithms such as design error and design change models [12]. 

Table 4 below shows the results of comparing the performance of classification models for 

design error analysis. As a result of 10-fold Cross-Validation, Random Forest recorded the highest 

detection accuracy with an F-measure value of 53%, while all four models did not show a 

significant difference in F-measurement values. Although the accuracy prediction rate of the four 

models is higher than 50%, it is necessary to improve the performance through further studies. 

Table 4. Validation Results for 4 Types of Design Error Analysis Model  

Testing Models Applied Algorithm 
Cross-Validation with STD Scaler (Fold: 10) 

Precision (%) Recall (%) F-measure (%) 

Prediction Model #1 Random Forest 53% 53% 53.0% 

Prediction Model #2 Decision Tree 52% 50% 51.0% 

Prediction Model #3 Gradient Boosting 51% 50% 50.5% 

Prediction Model #4 XGBoost 51% 53%  52.0% 

4.3. Change Order Forecasting Module 

The change order analysis module (M3) is a module for predicting schedule severity and cost 

severity using change order information. Design error analysis and change order analysis are 

fundamentally peer analysis methods in that both design errors and design changes predict the 

impact on schedule and cost. As a result, semi-structured data, application of the same data pre-

processing technique, and algorithms for analysis also applied the same series. However, the data 

sets are slightly different due to the details of the collected data. 

4.3.1. Data Collection and Pre-processing 

For the M3, about 3000 change order data such as change order report, the reason for design 

change, design change type, revision history of P&ID and plot plan were collected from 72 EPC 

projects in the past. The most important among various data items is the reason for design change, 

and it is classified into change type, schedule severity, and cost severity, as shown in Table 5. The 

severity of the schedule delay was classified as the ratio of the design period to the total project 

cost. The severity of design change cost overrun was classified according to the ratio of the total 

design change amount to the total project cost. 

Table 5. Classification of Design Change type, Schedule Delay Severity and Cost Overrun. 

Class Sub-Class  

Schedule Delay Impact 

due to Design Change 

Safe 0 ≤ Delay of Total Schedule < 1% 

Marginal 1 ≤ Delay of Total Schedule < 2% 

Serious 2% ≤ Delay of Total Schedule 

Cost Overrun Impact 

due to Design Change 

Safe 0 ≤ Cost overrun of Total Cost < 5% 

Marginal 5% ≤ Cost overrun of Total Cost < 10% 

Serious 10% ≤ Cost overrun of Total Cost 

In the M3, pre-processing was carried out similarly to the M2. The data was done through the 

four scalers mentioned above. The scaler showing optimal performance was selected, and data that 

did not affect the analysis such as design ID were deleted using regular expressions. All needless 
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variables were removed and text data such as design change reasons was pre-processed. After all, 

feature selection was performed through integer vectorization of text data and formalization. 

4.3.2. Modeling and Validation 

 The M3 constructed an ML model using a classification algorithm similar to design errors 

analysis because a target variable for design change data is a categorical variable. The causes of 

design change were classified, and the severity of schedule delay and cost overrun was analyzed 

through a predictive model based on design change history data. 

The M3 used four classification algorithms like design error analysis, and 10-fold Cross-

Validation was used for the applied model. In addition, the test was conducted using data scaled 

with a standard scaler, and the training data and verification data were divided and applied at a 

ratio of 80:20. The evaluation was made using the F-measure. 

As a result of Cross-Validation, Random Forest recorded the highest design change detection 

accuracy with an F-measure value of 66.5%, and Decision Tree showed the lowest prediction rate 

with an F-measure of 57.4%. Although all four models provide a prediction rate of more than 50%, 

further improvement is needed to advance performance. Table 6 shows the validation results of 

four predictive models. 

Table 6. Validation Results for 4 Types of Change Order Analysis Model  

Testing Models Applied Algorithm 
Cross-Validation with STD Scaler (Fold : 10) 

Precision (%) Recall (%) F-measure (%) 

Prediction Model #1 Random Forest 66% 67% 66.5% 

Prediction Model #2 Decision Tree 55% 60% 57.4% 

Prediction Model #3 Gradient Boosting 60% 63% 61.5% 

Prediction Model #4 XGBoost 64% 60% 61.9% 

5. CONCLUSIONS 

The purpose of this study is to respond to project risks based on data generated during the 

design and construction phase of the EPC project and to help engineers make decisions. First, for 

the analysis of the EPC project, design information such as project data of about 72 EPC plant 

projects, including the contract price and design cost, and the owner’s comments on 2D Modeling 

and design error reports were collected. The collected data was databased, and data pre-processing 

was performed to apply it to the ML model. Through this study, the design cost analysis module, 

design error analysis module, and change order analysis module were developed, and an ML model 

was developed for each module. 

The M1 aims to predict design estimates by analyzing man-hour input costs to engineers, and 

the M2 aims to predict the severity of design errors and the resulting schedule delay severity. Lastly, 

the purpose of the M3 is to predict the severity of schedule delays and cost overruns due to design 

change by analyzing the cause of design change. 

The M1 is 14.39% MAPE of the Decision Tree model, and the design cost prediction accuracy 

of 85% was confirmed. In the M2 and M3, Random Forest showed the highest prediction rates with 

F-measure values of 53% and 66.5%, respectively. Currently, the accuracy of the prediction rate 

of the M2 and M3 is low, but performance improvement can be expected through the accumulation 

of more data in the future. It is hoped that the use of three design modules based on objective and 

quantitative evidence reflecting the characteristics of the project will be increased for engineering 

practitioners. 



830 

 

REFERENCES 

[1] D. McNair, “EPC Contracts in the Power Sector, Asia Pacific Projects Update”, DLA, 2011. 

[2] M. Khadtare, E. Smith, “Fractal-COSYSMO Systems Engineering Cost Estimation for 

Complex Projects”, Procedia Computer Science, 2011. 

[3] M. Marzouk, M. Elkadi, “Estimating water treatment plants cost using factor analysis and 

artificial neural networks”, Journal of Cleaner Production, vol. 112, pp. 4540-4549, 2016 

[4] I. Pesko, V. Mucenski, “Estimation of Costs and Durations of Construction of Urban Roads 

Using ANN and SMV”, Complexity, vol. 2017, pp. 1-13, 2017. 

[5] Y. Elfahham, “Estimation and prediction of construction cost index using neural networks, time 

series, and regression”, Alexandria Engineering Journal, vol. 58, no. 2, pp. 499-506, 2019. 

[6] M. J. Kaiser, “The Offshore Pipeline Construction Industry”, Elsevier Science & Technology, 

pp. 229-253, 2020. 

[7] S. Sajid, V. Marius, A. Soylu, D. Roman, “Predictive Data Transformation Suggestions in 

Grafterizer Using Machine Learning”, Communications in Computer and Information Science, pp. 

137-149, 2019. 

[8] T. Li, B. Jing, N. Ying, “Adaptive Scaling”, Cornell University, 2017. 

https://arxiv.org/abs/1709.00566 

[9] A. De Myttenaere, B. Golden, B. Le Grand, F. Rossi, “Mean Absolute Percentage Error for 

regression models”, Neurocomputing (Amsterdam), vol. 192, pp. 38-48, 2016. 

[10] T. Mikolov, W. Yih, G. Zweig, “Linguistic regularities in continuous space word 

representations”, In Proceedings of the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies (NAACL HLT 2013), Atlanta, USA, 

pp. 746-751, 2013. 

[11] Z. Yu, M. Zhang, “Multi-Label Classification with Label-Specific Feature Generation: A 

Wrapped Approach”, IEEE Electronic Library (IEL) Journals, 2021. 

[12] J-M. Lee, “Developing Cyber Risk Assessment Framework for Cyber Insurance: A Big Data 

Approach”, Insurance Research Institute, Vol. 2018, no. 15, pp. 1-80, 2018. 

 

  

https://www.duo.uio.no/discover?filtertype_1=author&filter_relational_operator_1=equals&filter_1=Sajid,%20Saliha
https://www.duo.uio.no/discover?filtertype_1=author&filter_relational_operator_1=equals&filter_1=Soylu,%20Ahmet
https://www.duo.uio.no/discover?filtertype_1=author&filter_relational_operator_1=equals&filter_1=Roman,%20Dumitru

