• Title/Summary/Keyword: M/G/1 queue

Search Result 94, Processing Time 0.032 seconds

TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN MX/G/1 RETRIAL QUEUE

  • KIM, JEONGSIM
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.343-350
    • /
    • 2015
  • We consider an MX/G/1 retrial queue, where the batch size and service time distributions have finite exponential moments. We show that the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function. Our result generalizes the result of Kim et al. (2007) to the MX/G/1 retrial queue.

Analysis of the M/Gb/1 Queue by the Arrival Time Approach (도착시점방법에 의한 M/Gb/1 대기행렬의 분석)

  • Chae, Kyung-Chul;Chang, Seok-Ho;Lee, Ho-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • We analyze bulk service $M/G^{b}/1$ queues using the arrival time approach of Chae et al. (2001). As a result, the decomposition property of the M/G/1 queue with generalized vacations is extended to the $M/G^{b}/1$ queue in which the batch size is exactly a constant b. We also demonstrate that the arrival time approach is useful for relating the time-average queue length PGF to that of the departure time, both for the $M/G^{b}/1$queue in which the batch size is as big as possible but up to the maximum of constant b. The case that the batch size is a random variable is also briefly mentioned.

Approximation of M/G/c Retrial Queue with M/PH/c Retrial Queue

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.169-175
    • /
    • 2012
  • The sensitivity of the performance measures such as the mean and the standard deviation of the queue length and the blocking probability with respect to the moments of the service time are numerically investigated. The service time distribution is fitted with phase type(PH) distribution by matching the first three moments of service time and the M/G/c retrial queue is approximated by the M/PH/c retrial queue. Approximations are compared with the simulation results.

Asymptotic Distributions of Maximum Queue Lengths for M/G/1 and GI/M/i Systems

  • Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • In this paper, we investigate the asymptotic distributions of maximum queue length for M/G/1 and GI/M/1 systems which are positive recurrent. It is well knwon that for any positive recurrent queueing systems, the distributions of their maxima linearly normalized do not have non-degenerate limits. We show, however, that by concerning an array of queueing processes limiting behaviors of these maximum queue lengths can be established under certain conditions.

  • PDF

Analysis of Unfinished Work and Queue Waiting Time for the M/G/1 Queue with D-policy

  • Park, Yon-Il;Chae, Kyung-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.523-533
    • /
    • 1999
  • We consider the M/G/1 queueing model with D-policy. The server is turned off at the end of each busy period and is activated again only when the sum of the service times of all waiting customers exceeds a fixed value D. We obtain the distribution of unfinished work and show that the unfinished work decomposes into two random variables, one of which is the unfinished work of ordinary M/G/1 queue. We also derive the distribution of queue waiting time.

  • PDF

The joint queue length distribution in the nonpreemptive priority M/G/1 queue (비선점 우선순위 M/G/1 대기행렬의 결합 고객수 분포)

  • Kim Gil-Hwan;Chae Gyeong-Cheol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1104-1110
    • /
    • 2006
  • In this paper we present a simple approach to the joint queue length distribution in the nonpreemptive priority M/G/1 queue. Without using the supplementary variable technique, we derive the joint probability generating function of the stationary queue length at arbitrary time.

  • PDF

Analysis of the M/G/1 Priority Queue with vacation period depending on the Customer's arrival (휴가기간이 고객의 도착에 영향을 받는 휴가형 우선순위 M/G/1 대기행렬 분석)

  • Jeong, Bo-Young;Park, Jong-Hun;Baek, Jang-Hyun;Lie, Chang-Hoon
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.283-289
    • /
    • 2012
  • M/G/1 queue with server vacations period depending on the previous vacation and customer's arrival is considered. Most existing studies on M/G/1 queue with server vacations assume that server vacations are independent of customers' arrival. However, some vacations are terminated by some class of customers' arrival in certain queueing systems. In this paper, therefore, we investigate M/G/1 queue with server vacations where each vacation period has different distribution and vacation length is influenced by customers' arrival. Laplace-Stieltjes transform of the waiting time distribution and the distribution of number of customers waiting for each class of customers are respectively derived. As performance measures, mean waiting time and average number of customers waiting for each class of customers are also derived.

A Note on the M/G/1/K Queue with Two-Threshold Hysteresis Strategy of Service Intensity Switching (고객수 상태에 따른 서비스를 제공하는 M/G/1/K 대기체계에 관한 소고)

  • Choi, Doo Il;Kim, Bo Keun;Lee, Doo Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.3
    • /
    • pp.1-5
    • /
    • 2014
  • We study the paper Zhernovyi and Zhernovyi [Zhernovyi, K.Y. and Y.V. Zhernovyi, "An $M^{\Theta}/G/1/m$ system with two-threshold hysteresis strategy of service intensity switching," Journal of Communications and Electronics, Vol.12, No.2(2012), pp.127-140]. In the paper, authors used the Korolyuk potential method to obtain the stationary queue length distribution. Instead, our note makes an attempt to apply the most frequently used methods : the embedded Markov chain and the supplementary variable method. We derive the queue length distribution at a customer's departure epoch and then at an arbitrary epoch.