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Abstract

We study the paper Zhernovyi and Zhernovyi [Zhernovyi, K.Y. and Y.V. Zhernovyi, “An Mθ/G/1/m system with 

two-threshold hysteresis strategy of service intensity switching,” Journal of Communications and Electronics, Vol.12, 

No.2(2012), pp.127-140]. In the paper, authors used the Korolyuk potential method to obtain the stationary queue 

length distribution. Instead, our note makes an attempt to apply the most frequently used methods : the embedded 

Markov chain and the supplementary variable method. We derive the queue length distribution at a customer's de-

parture epoch and then at an arbitrary epoch.

Keywords：M/G/1/K Queue, Queue Length Dependent Service Rate, Thresholds, Finite Buffer

1. Introduction

In this paper, the finite capacity queueing sys-

tem with threshold based service is analyzed. 

Queueing systems with finite buffers arise in a 

wide variety of applications such as computer 
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systems, telecommunication networks, produc-

tion lines and so on. While operating systems 

with a queue, in which the arrivals at the sys-

tems and the services of customers occur ran-

domly, some customers may suffer long delay. 

This may finally cause the situation that the de-

lay requirement of users is not satisfied. One of 

the solutions to this problem is to control the 

service characteristics, typically times. It means 

the more customers in the system, the faster 

services provided. For example, a queueing sys-

tem with variable service times depending upon 

the number of customers in the system operates 

as follows : when the number of customers in 

the system is less than the predetermined value, 

namely threshold, customers are served in ordi-

nary service times. Meanwhile, when the number 

of customers exceeds the threshold, the service 

rate is increased to a certain value to expedite 

reducing waiting times. 

Recently, Zhernovyi and Zhernovyi [1] ana-

lyzed the queueing model with threshold based 

service times. In their work, authors used the 

Korolyuk potential method to obtain the sta-

tionary queue length distribution. The purpose of 

this note is to apply two different methods that 

are the most frequently used by queueing ana-

lysts: the embedded Markov chain and the sup-

plementary variable method. The embedded Mar-

kov chain is useful and intuitive when we estab-

lish the mathematical equations for modeling. 

The supplementary variable method in our note 

plays an auxiliary role of obtaining the stationary 

queue length distribution. Our study may help 

readers more easily understand Zhernovyi and 

Zhernovyi’s [1] model.

The remainder of this paper is organized as 

follows. Section 2 describes our queueing model. 

In Section 3, the main results, queue length dis-

tributions at a customer’s departure epoch and 

at an arbitrary epoch are given, respectively.

2. Model Description

The customers arrive according to a Poisson 

process with rate . The customers are accom-

modated in buffer if the server is not available. 

The buffer is assumed to be finite with capacity 

  for real applications. The customers arriving 

when the buffer is full are blocked and lost. 

There is a single server. The customers are ser-

ved by First-Come-First-Service based on their 

arrival order. The service time of customers has 

different service times according to the number 

of customers in the system. Concretely, there are 

two thresholds   and   ≤   on buffer. The 

server is initially idle and starts to work with 

the service time   on a customer’s arrival. If the 

number of customers in the system is equal to 

or greater than the threshold   at the service 

initiation, the customers are served by the serv-

ice time  . This service time also is continued 

until the number of customers in the system re-

duces the threshold  . If the number of custom-

ers in the system is equal to or smaller than   

at the service initiation, the customers are served 

by the service time  . This process is repeated. 

For ∈ , the service time   has the dis-
tribution function  , mean  , and the Laplace 

transform 
. We assume  ≤  because cus-

tomers must be served faster when there are 

many customers in the system. In [Figure 1], we 

present one sample path of our queueing model 

for clear understanding.
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[Figure 1] An Example of the Sample Path

3. Analysis 

3.1 Queue Length Distribution at Departure Epochs

In this section, we derive the queue length dis-

tribution at departure epochs of customers. We 

define the period in which the service time of 

customers is generated by the service time   as 

the underload period, and define the period in 

which the service time of customers is generated 

by the service time   as the overload period. Let 

us introduce the following notations :

  the th customerʼs departure epoch, ≥  
  

  the number of customers in the system 

right after  .

 









1, if the system is in the underload period 

right after  ,

2, if the system is in the overload period 

right after  .

Then, the process    ≥  form a Mar-

kov chain with finite state space

        ⋯    

Note that if  ≤ , then   , and if  ≥ , 

then   . We define the steady-state probability 

of the Markov chain    ≥  as follows :

  lim
→∞

      ≤≤    

Note that     for ≤  ≤  ,     for 

 ≤≤. In order to derive  , we in-

troduce the following probabilities :


 arrivals of customers during the ser-

vice time  

 


∞



 
     


  

 

∞


 .

We also introduce the matrices : 

  
 

  ≤≤    ′  
 



   ≥

  
 

 
 ≤≤    ′  

 


 


′   



 
 ≥     

 
 ≥

and


′
  



     
′






 



 







      

 
 .

Then, the transition probability matrix   of the 

Markov chain    ≥  is given by
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2
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1
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0 1 3 2 1

1 2 3
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0 1
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0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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K L K L K L

K L K L K L

C C C C C C

C C C C C

C C C
C C C

C C

The steady-state probability vector   of the 

Markov chain    ≥  is given by solv-

ing following simultaneous equations :    

and   ⋯   

3.2 Queue Length Distribution at an Arbitrary 

Time

In this subsection we derive the probability 

distribution of the queue length at an arbitrary 

time. Let   be the number of customers in the 

system at time  , and

 









1, if the system is in the underload period 

at time  ,

2, if the system is in the overload period 

at time .

Define the stationary probabilities : 

  lim
→∞

  ≤≤

First, by the key renewal theorem, we have

  

 




where    
   ∑     ∑    , 

the mean inter-departure time of customers. 

Next, for ≤≤, we derive the probabilities 

  by using the supplementary variable method. 

Let   be the elapsed (remaining, respectively) 

service time for the customer in service. Fur-

thermore, we define the stationary joint proba-

bility distribution of the number of customers in 

the system and the remaining service time for 

the customer in service :

   lim
→∞

   

  ≤  ≤≤    

And the Laplace transform of    is given by 


   



∞

  . In order to derive 

the queue length distribution at an arbitrary time, 

we must know the number of arrivals of custom-

ers during the elapsed service time. So we also 

define the following joint probability     :
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   lim
→∞

  arrivals of customers dur-

ing ,     ≤,

≥    

and the Laplace transform of     is given by 


    



∞

   . By conditioning the 

queue length at last service completion epoch be-

fore time   
   satisfies the following equa-

tions for ≤≤  :


  



 


   

 

   

 
  







   

 


 
  



 
  




   .

By the same method as in Choi et al. [2], 
  

is given as follows : 


    

 



 




    

 



,    

where    
   . Finally, sub-

stituting 
    into above equations, and put-

ting   , we obtain the stationary queue length 

probabilities at an arbitrary time for ≤≤  :

  
 

 

 
 




 

  


 

 

    


 

  




 
 




 

  


  

and

  




.

Thus, by using the stationary queue length dis-

tribution  ≥, we obtain the following per-

formance measures :

(a) The loss probability ( ) :

  

(b) The mean queue length : 

  
  





(c) By Little’s law, we obtain the mean waiting 

time in the system :

  


.

4. Conclusion

In this paper, we analyzed the M/G/1/K queue-

ing model with two-threshold hysteresis strategy 

of service intensity switching and suggested to 

use the embedded Markov chain and the supple-

mentary variable method to obtain the queue length 

distribution of our model. Our method is much 

simpler than that of Zhernovyi and Zhernovyi [1] 

with respect to obtaining queue length distribution.
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