• Title/Summary/Keyword: Lyapunov stability theorem

Search Result 129, Processing Time 0.026 seconds

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

A low-complexity controller design for Segway (세그웨이를 위한 낮은 복잡도를 갖는 제어기의 설계)

  • Kim, Byung-Woo;Hwang, Sung-Jo;Park, Bong Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1339-1340
    • /
    • 2015
  • In this paper, we propose a low-complexity control scheme for segway. To design the controller, we use the prescribed performance function and analyze the stability of the proposed control system using the Lyapunov stability theorem. By prescribed performance function, we can adjust the transient and steady-state response. Finally, the simulation results are provided to illustrate the effectiveness of the proposed scheme.

  • PDF

MOMENT ESTIMATE AND EXISTENCE FOR THE SOLUTION OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATION

  • Chen, Huabin;Wan, Qunjia
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the existence and uniqueness for the global solution of neutral stochastic functional differential equation is investigated under the locally Lipschitz condition and the contractive condition. The implicit iterative methodology and the Lyapunov-Razumikhin theorem are used. The stability analysis for such equations is also applied. One numerical example is provided to illustrate the effectiveness of the theoretical results obtained.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Repetitive learning method for trajectory control of robot manipulators using disturbance observer

  • Kim, Bong-Keun;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.99-102
    • /
    • 1996
  • A novel iterative learning control scheme comprising a unique feedforward learning controller and a disturbance observer is proposed. Disturbance observer compensates disturbance due to parameter variations, mechanical nonlinearities, unmodeled dynamics and external disturbances. The convergence and robustness of the proposed controller is proved by the method based on Lyapunov stability theorem. The results of numerical simulation are shown to verify the effectiveness of the proposed control scheme.

  • PDF

ATTRACTORS OF LOCAL SEMIFLOWS ON TOPOLOGICAL SPACES

  • Li, Desheng;Wang, Jintao;Xiong, Youbing
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.773-791
    • /
    • 2017
  • In this paper we introduce a notion of an attractor for local semiflows on topological spaces, which in some cases seems to be more suitable than the existing ones in the literature. Based on this notion we develop a basic attractor theory on topological spaces under appropriate separation axioms. First, we discuss fundamental properties of attractors such as maximality and stability and establish some existence results. Then, we give a converse Lyapunov theorem. Finally, the Morse decomposition of attractors is also addressed.

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

Output Feedback Control for Feedforward Nonlinear Systems with Time Delay (시간지연을 갖는 피드포워드 비선형시스템의 출력 피드백 제어)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • This paper presents the output feedback control design for feedforward nonlinear systems with input and output delay. The proposed output feedback controller is composed of a linear observer and a linear controller. It is shown that by using Lyapunov-Krasovskii theorem, the proposed controller ensures a global asymptotic stability for arbitrarily large delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Effect of Circuit Parameters on Stability of Voltage-fed Buck-Boost Converter in Discontinuous Conduction Mode

  • Feng, Zhao-He;Gong, Ren-Xi;Wang, Qing-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1283-1289
    • /
    • 2014
  • The state transition matrix are obtained by solving state equations in terms of Laplace inverse transformation and Cayley-Hamilton theorem, and an establishment of a precise discrete-iterative mapping of the voltage-fed buck-boost converter operating in discontinuous conduction mode is made. On the basis of the mapping, the converter bifurcation diagrams and Lyapunov exponent diagrams with the input voltage, the resistance, the inductance and the capacitance as the bifurcation parameters are obtained, and the effect of the parameters on the system stability is deeply studied. The results obtained show that they have a great influence on the stability of the system, and the general trend is that the increase of either the voltage-fed coefficient, input voltage or the load resistance, or the decrease of the filtering inductance, capacitance will make the system stability become poorer, and that all the parameters have a critical value, and when they are greater or less than the values, the system will go through stable 1T orbits, stable 2T orbits, 4T orbits, 8T orbits and eventually approaches chaos.