• 제목/요약/키워드: Lyapunov Theory

검색결과 305건 처리시간 0.022초

A LYAPUNOV CHARACTERIZATION OF ASYMPTOTIC CONTROLLABILITY FOR NONLINEAR SWITCHED SYSTEMS

  • Wang, Yanling;Qi, Ailing
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper, we show that general nonlinear switched systems are asymptotically controllable if and only if there exist control-Lyapunov functions for their relaxation systems. If the switching signal is dependent on the time, then the control-Lyapunov functions are continuous. And if the switching signal is dependent on the state, then the control-Lyapunov functions are $C^1$-smooth. We obtain the results from the viewpoint of control system theory. Our approach is based on the relaxation theorems of differential inclusions and the classic Lyapunov characterization.

댐핑 영향을 반영하는 Lyapunov 함수 그룹의 유도 및 응용 (Derivation of a Group of Lyapunov Functions reflecting Damping Effects and its Application)

  • 문영현;최병곤;노태훈;이태식;이윤섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.195-198
    • /
    • 1995
  • Most of the theorems of nonlinear stability is based on the Lyapunov stability theory. The Lyapunov function method is the most well-known and provides precise and rigorous theoretical backgrounds. However, tile conventional approach to direct stability analysis has been performed without taking account of damping effects. For accurate stability analysis of nonlinear systems, it is required to consider the damping effects. This paper presents a new method to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system governing equations. This method tan be utilized as a powerful tool to determine the region of attraction.

  • PDF

로봇 매니퓰레이터의 분산 적응제어군 (A Family of a Decentralized Adaptive Control for Robotic Manipulators)

  • 신규현;이용연;이수한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.737-742
    • /
    • 2004
  • In this paper, a family of decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of the manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

  • PDF

NEW CONDITIONS ON EXISTENCE AND GLOBAL ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS FOR BAM NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Zhang, Zhengqiu;Zhou, Zheng
    • 대한수학회지
    • /
    • 제48권2호
    • /
    • pp.223-240
    • /
    • 2011
  • In this paper, the problem on periodic solutions of the bidirectional associative memory neural networks with both periodic coefficients and periodic time-varying delays is discussed. By using degree theory, inequality technique and Lyapunov functional, we establish the existence, uniqueness, and global asymptotic stability of a periodic solution. The obtained results of stability are less restrictive than previously known criteria, and the hypotheses for the boundedness and monotonicity on the activation functions are removed.

회전 관절형 로봇 매니플레이터의 강인제어 (Robust Control of a Robot Manipulator with Revolute Joints)

  • 신규현;이수한
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.77-83
    • /
    • 2003
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of revolute joint robot dynamics. The stability of the robot with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot system is stable, and has excellent trajectory tracking performance.

로봇 매니퓰레이터의 분산 적응제어 (Decentralized Adaptive Control of Robot Manipulators)

  • 이용연;신규현;이수한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.959-962
    • /
    • 2003
  • In this paper, a decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of robot manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot manipulator system is stable, and has excellent trajectory tracking performance.

  • PDF

회전 관절형 로봇 매니플레이터의 강인제어 (Robust Control of a Robot Manipulator with Revolute Joints)

  • 신규현;이수한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2002
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of serial link robot dynamics. The stability of the robot with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot system is stable, and has excellent trajectory tracking performance.

  • PDF

로봇 매니플레이터의 분산 적응제어 (Decentralized Adaptive Control of Robot Manipulators)

  • 이수한;이용연;신규현
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.110-116
    • /
    • 2004
  • In this paper, a decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of robot manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

백스테핑을 이용한 카오스 Liu 시스템의 제어 (Control and Tracking Chaotic Liu Systems via Backstepping Design)

  • 유성훈;현창호;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.324-326
    • /
    • 2006
  • This paper present backstepping control approach for controling chaotic Liu system. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov Function. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical solution are shown to verify the result.

  • PDF

Lyapunov 안정도 이론을 이용한 가변구조모델추종제어기 설계방법 (A VSMFC Design Method Using the Stability Theory of Lyapunov)

  • 안수관;배준경;박종국
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.983-994
    • /
    • 1989
  • This paper presents a new variable structure model following control algorithm for control of manipulators. The reference model is a simple double integrators and the acceleration input for the robot manipulator consists of a proportional and derivative controller for the purpose of trajectory tracking. The control algorithm is derived by using Lyapunov stability theory instead of S.S < O, as is usual in the current VSS controller design. This proposed control algorithm does not require good knowledge of the parameter in the inertia matrix and is easily extendable to robot manipulators with a higher number of links. Also, the new algorithm is computationally fast because of not requiring the matrix inversion. The computer simulation was carried out to evaluate the performance of the proposed VSMFC.

  • PDF