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A LYAPUNOV CHARACTERIZATION

OF ASYMPTOTIC CONTROLLABILITY

FOR NONLINEAR SWITCHED SYSTEMS

Yanling Wang and Ailing Qi

Abstract. In this paper, we show that general nonlinear switched sys-
tems are asymptotically controllable if and only if there exist control-
Lyapunov functions for their relaxation systems. If the switching signal
is dependent on the time, then the control-Lyapunov functions are con-
tinuous. And if the switching signal is dependent on the state, then the
control-Lyapunov functions are C1-smooth. We obtain the results from
the viewpoint of control system theory. Our approach is based on the
relaxation theorems of differential inclusions and the classic Lyapunov
characterization.

1. Introduction

The problem of Lyapunov characterizations of asymptotic behavior is of
particular interest in the design and analysis of robust feedback controls. It can
be traced back to the pioneering work of Lyapunov [9], and has been extensively
studied since 1950s’. As for the literature on asymptotic stability analysis of
switched systems, despite the fact that it is vast and growing, the Lyapunov
characterization method with the relaxation theorems of differential inclusions
is still one of the very few starting points for nonlinear switched systems.

By a nonlinear switched system, we mean a hybrid dynamical system that is
composed of a family of continuous-time subsystems and a rule orchestrating
the switching signal between the subsystems (see [2]). The controllability of
nonlinear switched systems has been discussed for a long time. A popular
technique for this research relies on Lie algebraic methods (see [1, 7, 10]). In
this paper, we consider the asymptotic controllability of nonlinear switched
systems by using the Lyapunov characterization with the relaxation theorems
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of differential inclusions. The problem can be described by the form

(1.1) ẋ = fσ(x), x ∈ R
n, σ ∈ P,

where P = {1, 2, . . . ,m}, and the function fσ is Lipschitz with fσ(0) = 0 for
each σ ∈ P . As a matter of fact, the switched system (1.1) can be recast as

(1.2) ẋ =

m
∑

i=1

fi(x)ui,

where the admissible controls are of the form uk = 1, ui = 0 ∀i 6= k (this
corresponds to σ = k). So the switching signal σ can be seen as an input
control, thus the switched system (1.1) can be described as a control system
with a piecewise constant control

(1.3) ẋ = u · f(x), x ∈ R
n,

where the control input u : [0,+∞) → U is a piecewise constant function and
U = {e1, e2, . . . , em} is the standard orthonormal basis of Rm. The function
f = (f1, f2, . . . , fm) and every fi : R

n → R
n(i = 1, 2, . . . ,m) are Lipschitz. In

this way, the switched system (1.1) is equivalent to the control system (1.3),
thus we may research properties of the nonlinear switched systems within the
framework of general control systems.

Sontag proved in [11] that, a control system in R
n is asymptotically con-

trollable to the origin if and only if there exists a positive definite continuous
function of the states whose derivative can be made negative by appropriate
choices of controls. Later on, the result of [11] was improved in [12]. Subse-
quently, Clark, Ledyaev and Stern showed in [6] that some of these results can
be generalized to differential inclusions. In fact, it was proved in [6] that, dif-
ferential inclusions corresponding to upper semicontinuous multifunctions are
strongly asymptotically stable if and only if there exists a smooth Lyapunov
function. Almost meanwhile, Ledyaev and Sontag proved in [8] that, the ex-
istence of a smooth uniform control Lyapunov function for general nonlinear
control system (2.1) if and only if there exists a robustly stabilizing feedback.

Our purpose is to apply the results in the reference [8] and [12] to this
paper by founding a relationship of solutions between switched systems and
control systems, so the control u is required to be measurable and essentially
bounded, then we take account of the following control system corresponding
to the switched system (1.3)

(1.4) ẋ = u · f(x), x ∈ R
n,

where u ∈ L∞([0,+∞);U).
However, there is still a difficulty that the control set U is not convex, then

we convexify the control set by setting u(t) ∈ coU, where coU is the closed
convex hull of U. So we obtain the following control system

(1.5) ẋ = u · f(x), x ∈ R
n,

where u ∈ L∞([0,+∞); coU).
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Despite a finite number of switching signals are extended into an infinite
number of input controls, the solution set of switched systems is dense in so-
lution set of its relaxation systems. Actually, we will prove in Section 3 that
every solution of the control system (1.5) can be approximated by one solution
of the control system (1.3), which implies that the asymptotic controllability
is equivalent between the control system (1.3) and (1.5).

It is well known that stability for arbitrary switching is a basic problem
regarding stability and design of switched systems. Because spaces of switching
signals do not have any completeness properties, switching is in principle very
hard to study. The results that we present here allow us achieve a simplification
that is, switching signals can be understood in terms of arbitrary Lebesgue-
measurable controls. we wish to emphasize that the results that we present not
only to extend some of those in [8] and [12], but get a better comprehension
of the structure of the approximation of solutions of this class of nonlinear
switched systems.

This paper is organized as follows. In Section 2, we provide some basic
definitions and auxiliary results which will be required in this paper. In Section
3, we prove the Lyapunov characterization for asymptotic controllability of the
control system (1.3). Finally, in Section 4, our conclusions are given.

2. Basic knowledge

Let us start by considering general nonlinear control systems of the type

(2.1) ẋ = f(x, u), x ∈ R
n,

where the function f is locally Lipschitz, the control u is a measurable and
essentially bounded function with taking value in a locally compact and convex
metric space U .

For general nonlinear control systems (2.1), there have been rich results.
Conclusions related to a Lyapunov characterization of asymptotic controllabil-
ity for open loop systems are made in [12] and [11], and a Lyapunov charac-
terization of feedback stability for closed loop systems or differential inclusions
are made in [10] and [6].

Definition 2.1 ([11]). We say that the control system (2.1) is asymptotically
controllable if the following properties hold:

(i) For each x ∈ R
n there exists a control u ∈ U such that the responding

solution x(t) from the initial state x is defined for all t ≥ 0 and x(t) → 0 as
t → ∞.

(ii) For each ε > 0 there exists a δ > 0 such that for any state x ∈ R
n with

|x| < δ there is a control u ∈ U as in (i) such that |x(t)| ≤ ε for all t ≥ 0.
(iii) There exist positive η and k such that, if the state x in (ii) satisfies also

|x| < η, then the control can be chosen with |u| ≤ k.

A function V : Rn → [0,+∞) is positive definite if

V (0) = 0 and V (x) > 0 for ∀x 6= 0,



4 YANLING WANG AND AILING QI

and V is proper if

V (x) → ∞ as |x| → ∞.

Definition 2.2 ([12]). For a function V : Rn → [0,+∞), a state x ∈ R
n and

a direct v ∈ R
n, the upper contingent derivative of V in the direction v at x is

defined as

D+
v V (x) := lim inf

t→0+,w→v

1

t
[V (x + tw)− V (x)] .

The upper contingent derivative is widely studied in set-valued analysis and
differential inclusion [3, 4, 5]. Observe that if V is Lipschitz continuous, then
this definition coincides with the classical Dini derivative, that is

DV (x)(v) := lim inf
t→0+

1

t
[V (x+ tv)− V (x)].

Naturally, if V is differentiable at x, then D+
v V (x) is the usual directional

derivative 〈∇V, v〉.

Definition 2.3 ([12]). A continuous control-Lyapunov function for open loop
system (2.1) is a function V : R

n → [0,+∞) which is continuous, positive
definite and proper such that there exists a continuous positive definite function
W : Rn → [0,+∞) with the property that for each x ∈ R

n there is an u ∈ U
such that

D+
f(x,u)V (x) ≤ −W (x).

Definition 2.4 ([8]). A C1-smooth control-Lyapunov function for closed loop
system (2.1) is a function V : Rn → [0,+∞) which is C1, positive definite and
proper such that there exists a continuous positive definite function W : Rn →
[0,+∞) with the property that for each x ∈ R

n there is an u = k(x) ∈ U such
that

〈∇V (x), f(x, k(x))〉 ≤ −W (x).

When the switching signal is dependent on the time, the corresponding con-
trol system is an open loop system. In reference [12], E. D. Sontag and H.
J. Sussmann give a continuous control-Lyapunov function characterization of
asymptotic controllability when the control system (2.1) is an open loop system.

Lemma 2.5. The control system (2.1) is asymptotically controllable if and only

if there exists a continuous control-Lyapunov function.

When the switching signal is dependent on the state, the corresponding
control system is a closed loop system. The feedback stabilization problem is
that of finding a feedback control k : Rn → U such that the origin in R

n is
asymptotically stable with respect to the trajectories of the closed loop system

ẋ = f(x, k(x)).
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In general, one of the most important reasons for using feedback control
lies in feedback’s robustness properties. By robustness we mean that for the
perturbed closed loop system

ẋ = f(x, k(x + e(t))) + w(t),

the feedback k drives the state of the system to a small neighborhood of the
origin, even in the presence of measurement error e(·) (arbitrary bounded func-
tion e : [0,+∞) → R

n) and external disturbance w(·) (measurable essentially
bounded function w : [0,+∞) → R

n).

Definition 2.6 ([8]). The feedback u = k(x) is said to be robustly stabilizing
if for any 0 < r < R there exist positive T = T (r, R), η = η(r, R) and M(R)
such that, for any measurement error e(·) and external disturbances w(·) for
which

|e(t)| ≤ η, ∀t ≥ 0; ||w(·)||∞ ≤ η

and every solution x(·) of the perturbed closed loop system with |x(0)| ≤ R
does not blow up and satisfies the following relations:

1. (uniform attractivity)

|x(t)| ≤ r, ∀t ≥ T,

2. (bounded overshoot)

|x(t)| ≤ M(R), ∀t ≥ 0,

3. (Lyapunov stability)

lim
R→0

M(R) = 0.

In reference [8], Y. S. Ledyaev and E. D. Sontag give a C1-smooth control-
Lyapunov function characterization of robustly asymptotic controllability when
the control system (2.1) is a closed loop system. The main result is the following
lemma.

Lemma 2.7. The control system (2.1) admits a robustly stabilizing feedback if

and only if there exists a C1-smooth control-Lyapunov function for it.

Note that in this paper the function f in the control system (2.1) is Lipschitz,
so it is obvious that the existence of a robustly stabilizing feedback for the
closed loop system is equivalent to the existence of a robustly asymptotically
controllable feedback for it.

Upon defining the multifunction

F (x) = f(x, U) =
⋃

u∈U

f(x, u),

the control system (2.1) becomes a specially parametric differential inclusion
of the form

(2.2) ẋ ∈ F (x), x ∈ R
n,
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where F is a set-valued function whose values are subsets of Rn. As usual, a
solution of (2.2) on an interval [a, b] is an absolutely continuous function such
that (2.2) holds a.e. on [a, b].

We denote by

B(K, η) := {x ∈ R
n | d(x,K) ≤ η}

the ball of radius η around the subset K ⊂ R
n, and

dH(A,K) := sup
x∈A

d(x,K)

is called the Hausdorff semidistance of subsets A and K in R
n, where d(x,K) =

infy∈K d(x, y). It is clear that

dH(A,K) ≤ ε if and only if A ⊂ B(K, ε).

Definition 2.8 ([5]). Let F : Rn → R
n be a set-valued map. We say that F

is Lipchitz if for any x, x′ ∈ R
n, there exists L ≥ 0 such that

F (x) ⊂ B(F (x′), L d(x, x′)).

Relaxation Theorem states that the solution set of an initial value problem
for a Lipschitz compact valued differential inclusion ẋ ∈ F (x) is dense in the
solution set of the same initial value problem for the corresponding relaxation
inclusion ẋ ∈ coF (x). We state now Relaxation Theorem which is used in the
proof of Lemma 3.5.

Theorem 2.9 ([4]). Let F , from Q = {x ∈ R
n | |x−x0| ≤ b} into the compact

subsets of Rn, be a Lipschitz set-valued map. Set I = [−T,+T ] and let x : I →
Q be a solution to

ẋ(t) ∈ co(F (x(t))), x(0) = x0

such that, for t ∈ I, ‖x(t) − x0‖ ≤ b. Then for every positive ε, there exists

y : I → Q, a solution to

ẏ(t) ∈ F (y(t)), y(0) = x0

such that

|y(t)− x(t)| ≤ ε, ∀t ∈ I.

3. Main results

We are now ready to state our main results.

Theorem 3.1. If the switching signal is dependent on the time, then the control

system (1.3) is asymptotically controllable if and only if the control system (1.5)
admits a continuous control-Lyapunov function V : Rn → [0,+∞), for each

x ∈ R
n there is a v ∈ co(fi) such that

D+
v V (x) ≤ −W (x) ∀x ∈ X, x 6= 0.
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Theorem 3.2. If the switching signal is dependent on the state, then the con-

trol system (1.3) exists a robustly asymptotically controllable feedback if and

only if the closed loop system (1.5) admits a C1-smooth control-Lyapunov func-

tion V : Rn → [0,+∞) for each x ∈ R
n there is a v = k(x) · f(x) ∈ co(fi) such

that

〈∇V (x), v〉 ≤ −W (x), ∀x ∈ X, x 6= 0.

To prove Theorems 3.1 and 3.2, we first analyze the relation between the
solutions of the control system (1.3), (1.4) and (1.5) and prove it.

Lemma 3.3. Assume that y(t) is a solution of the control system (1.4) defined
on [0,+∞). Then for any ε > 0, there exists a solution x(t) of the control

system (1.3) with x(0) = y(0) such that

|x(t) − y(t)| ≤ ε, ∀t ∈ [0,+∞).

Proof. Assume that y(t) is a solution of the control system (1.4) defined on
[0,+∞) with y(0) = ξ0 and the corresponding control u ∈ L∞([0,+∞);U).
For any ε > 0, take

Ω1 = {t ∈ [0,+∞) | u(t) = e1},

then there exists a sequence of intervals I1k , k = 1, 2, . . . which is not intersected
with each other such that m (

⋃

I1k\Ω1) ≤ ε/m. Let

v1(t) =

{

e1, t ∈
⋃

I1k ,
0, otherwise.

We have
∫

Ω1
|v1(t)− u(t)|dt ≤ ε/m.

In the same way, take

Ω2 = {t ∈ [0,+∞) | u(t) = e2},

then there exists a sequence of intervals I2k , k = 1, 2, . . . which is not intersected
with each other such that m (

⋃

I2k\Ω2) ≤ ε/m. Let

v2(t) =

{

e2, t ∈
⋃

I2k ,
0, otherwise.

We have
∫

Ω2
|v2(t)− u(t)|dt ≤ ε/m.

We proceed in this way until we take

Ωm = {t ∈ [0,+∞) | u(t) = em},

then there exists a sequence of intervals Imk
, k = 1, 2, . . . which is not inter-

sected with each other such that m (
⋃

Imk
\Ωm) ≤ ε/m. Let

vm(t) =

{

em, t ∈
⋃

Imk
,

0, otherwise.

We have
∫

Ωm
|vm(t)− u(t)|dt ≤ ε/m.

Define

v(t) = v1(t) + v2(t) + · · ·+ vm(t).
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If the intersection of intervals Ihi
and Ilj is not empty, here 1 ≤ h ≤ m,

1 ≤ l ≤ m, h 6= l and i, j = 1, 2, . . ., then we assume h < l as well and redefine

v(t) = eh, ∀t ∈ Ihi

⋂

Ilj .

Obviously, v : [0,+∞) → U is piecewise constant.

Let I =
m
⋃

j=1

∞
⋃

k=1

Ijk , then m ([0,+∞)\I) ≤ ε, I
⋃

I0 = [0,+∞) with I0 is a

set of measure zero and
∫

I

|v(t)− u(t)|dt ≤ ε.

We conclude that there exists a solution x(t) of the control system (1.3)
corresponding control v with x(0) = ξ0. We next prove |x(t) − y(t)| ≤ ε for
any t ∈ [0,+∞) by selecting I such that

diam(I) < 1/ sup
t∈I

|f(x(t))|,

here diam(I) = max
1≤j≤m

diam(Ijk).

Since x(t) is a solution of the control system (1.3), we can describe it with
the integral form that is

x(t) = x(0) +

∫ t

0

u(s) · f(x(s))ds, t ∈ [0,+∞).

Similarly, the integral form of y(t) is

y(t) = y(0) +

∫ t

0

v(s) · f(x(s))ds, t ∈ [0,+∞).

Then for any t ∈ [0,+∞), we have

|x(t) − y(t)| =

∣

∣

∣

∣

∫ t

0

u(s) · f(x(s))ds−

∫ t

0

v(s) · f(x(s))ds

∣

∣

∣

∣

≤

∫

I

|u(s)− v(s)| |f(x(s))|ds

≤ diam(I) · sup
t∈I

|f(x(t))| · ε

= ε. �

Remark 3.4. It suffices to derive the conclusion that the control system (1.4) is
asymptotically controllable if and only if the control system (1.3) is asymptot-
ically controllable by the definition of asymptotic controllability and Lemma
3.3.

Lemma 3.5. Pick any T > 0. Let z(t) be any solution of the control system

(1.5) defined on [0, T ], then, for any ε > 0, there exists a solution y(t) of the

control system (1.4) with y(0) = z(0) such that

|y(t)− z(t)| ≤ ε, ∀t ∈ [0, T ].
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Proof. For any x ∈ R
n, let

G(x) = {u · f(x) | u ∈ L∞([0,+∞);U)},

then the solution set of differential inclusion

ẋ ∈ G(x), x ∈ R
n

is equal to the solution set of the control system (1.4).
In the similar way, for any x ∈ R

n, let

H(x) = {u · f(x) | u ∈ L∞([0,+∞); coU)},

then the solution set of differential inclusion

ẋ ∈ H(x), x ∈ R
n

is equal to the solution set of the control system (1.5).
It is easy to conclude that H(x) = coG(x) for any x ∈ R

n by the definitions
of set-value function G and H .

Now we proof that the set-valued function G is Lipschitz. Indeed, based on
the fact that the function f is Lipschitz, for any x, x′ ∈ R

n, there exists L > 0
such that

d(f(x), f(x′)) ≤ L d(x, x′),

then

dH(G(x), G(x′)) = sup
u∈U

d(u · f(x), G(x′))

= sup
u∈U

inf
v∈U

d(u · f(x), v · f(x′))

≤ sup
u∈U

d(u · f(x), u · f(x′))

≤ sup
u∈U

|u| d(f(x), f(x′))

≤ L d(x, x′),

so we have
G(x) ⊂ B(G(x′), L d(x, x′)), ∀x, x′ ∈ R

n.

It is obvious that for any given x ∈ R
n, G(x) is a compact subset of Rn.

This completes the proof of the lemma from the Relaxation Theorem 2.9. �

Lemma 3.6. The control system (1.5) is asymptotically controllable if and only

if the control system (1.4) is asymptotically controllable.

Proof. The sufficiency is clear, so in the following we will only prove the nec-
essary part.

Assume that the control system (1.5) is asymptotically controllable, then
for every initial state ξ0 ∈ R

n there is a control u1 ∈ L∞([0,+∞); coU) and a
resulting solution z1(t) that drives ξ0 to 0. From item (i) in the definition of
asymptotic controllability, there is a T1 > 0 such that

|z1(t)| ≤ ε/2, ∀t ≥ T1.
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By virtue of the above Lemma 3.5, there is a solution y1(t) of the control system
(1.4) and a control v1 ∈ L∞([0,+∞);U) such that y1(0) = ξ0 and

|y1(t)− z1(t)| ≤ ε/2, t ∈ [0, T1].

Note y1(T1) = ξ1, we have

|ξ1| ≤ |y1(T1)− z1(T1)|+ |z1(T1)| ≤ ε.

For each ξ1 ∈ R
n there is a control u2 ∈ L∞([0,+∞); coU) and a resulting

solution z2(t) with z2(0) = ξ1 that drives ξ1 to 0. It follows by Definition 2.1
that there is a T2 > T1 such that

|z2(t− T1)| < ε/4, ∀t ≥ T2.

Due to the above Lemma 3.5, we obtain that there is a solution y2(t) of the
control system (1.4) and a control v2 ∈ L∞([0,+∞);U) such that y2(0) = ξ1
and

|y2(t− T1)− z2(t− T1)| ≤ ε/4, t ∈ [T1, T2].

Similarly, note yn(Tn) = ξn, we then have

|ξn| ≤ |yn(Tn)− zn(Tn)|+ |zn(Tn)| ≤ ε/n.

For each ξn ∈ R
n there is a control un+1 ∈ L∞([0,+∞); coU) and a resulting

solution zn+1(t) with zn+1(0) = ξn that drives ξn to 0, also by Definition 2.1
there is a Tn+1 > Tn such that

|zn+1(t− Tn)| < ε/[2(n+ 1)], ∀t ≥ Tn+1.

We apply Lemma 3.5 and obtain that there is a solution yn+1(t) of the control
system (1.4) and a control vn+1 ∈ L∞([0,+∞);Rn) such that yn+1(0) = ξn
and

|yn+1(t− Tn)− zn+1(t− Tn)| ≤ ε/[2(n+ 1)], t ∈ [Tn, Tn+1].

Now we obtain a control v ∈ L∞([0,+∞);U) immediately by setting

v(t) = vn(t), t ∈ [Tn−1, Tn], n = 1, 2, . . . ,

and a corresponding solution y(t) of the control system (1.4) by defining

y(t) = yn(t), t ∈ [Tn−1, Tn], n = 1, 2, . . . ,

with T0 = 0, y(0) = ξ0 and y(t) → 0 as t → ∞ which implies that the control
system (1.4) is asymptotically controllable. This completes the proof of the
desired result. �

Remark 3.7. It follows from Remark 3.4 and Lemma 3.6 that the control system
(1.5) is asymptotically controllable if and only if the control system (1.3) is
asymptotically controllable.

Proof of Theorem 3.1 and Theorem 3.2. By the results of Lemmas 2.5 and 2.7
and by Remark 3.7 we can get the conclusions of Theorem 3.1 and Theorem
3.2 immediately. �
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4. Conclusions

In this paper, we have established a necessary and sufficient condition of
stabilization of a certain class of nonlinear switched systems. The proof of
the theorems are greatly facilitated by establishing an association between the
switched systems and the control systems, and by using the relaxation theorems
of differential inclusions and the control-Lyapunov characterization.
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