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NEW CONDITIONS ON EXISTENCE AND GLOBAL

ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS FOR

BAM NEURAL NETWORKS WITH TIME-VARYING DELAYS

Zhengqiu Zhang and Zheng Zhou

Abstract. In this paper, the problem on periodic solutions of the bidi-
rectional associative memory neural networks with both periodic coef-
ficients and periodic time-varying delays is discussed. By using degree

theory, inequality technique and Lyapunov functional, we establish the
existence, uniqueness, and global asymptotic stability of a periodic solu-
tion. The obtained results of stability are less restrictive than previously
known criteria, and the hypotheses for the boundedness and monotonicity

on the activation functions are removed.

1. Introduction

A class of two-layer interassociative network called bidirectional associative
memory (BAM) neural network is an important model with the ability of in-
formation association, which is crucial for application in pattern recognition,
solving optimization problems and automatic control engineering [16, 17]. In
such applications, the dynamical characteristics of networks play an important
role. As is well known, in both biological and man-made neural networks, time
delays occur due to finite switching speed of the amplifiers and communication
time. The delays are usually time-varying, and sometimes vary violently with
time. They slow down the transmission rate and can influence the stability
of designed neural networks by creating oscillatory or unstable phenomena [3].
So it is more in accordance with this fact to study the BAM neural networks
with time-varying delays. The circuits diagram and connection pattern imple-
menting for the delayed BAM neural networks can be found in [8]. In recent
years, some useful results on the uniqueness and global stability of the equilib-
rium point for the delayed recurrent neural networks and delayed BAM neural

Received July 1, 2009; Revised March 15, 2010.
2010 Mathematics Subject Classification. 34K13, 34K20, 34K25.
Key words and phrases. periodic solution, BAM neural networks, global asymptotic sta-

bility, coincidence degree theory, Lyapunov functional.
Project supported by Doctoral Fund of Ministry of Education of China (No: 2008-

05321017), Postdoctoral fund of China (No: 20060400267), the Scientific Research Foun-
dation for the Returned Oversears Chinese Scholars, State Education Ministry.

c⃝2011 The Korean Mathematical Society

223



224 ZHENGQIU ZHANG AND ZHENG ZHOU

networks have been given, for example, see [1, 2, 3], [8], [13], [15], [17, 18, 19]
and references therein. It is well known that studies on neural dynamical
system not only involve a discussion of stability properties, but also involve
many dynamic behavior such as periodic oscillatory behavior, synchronization,
dissipativity, bifurcation, and chaos [5, 8, 9]. In [9], the authors studied the
global point dissipativity of neural networks with mixed time-varying delays.
In [5], based on the invariant principle of functional differential equations, a
simple adaptive feedback scheme is proposed for the synchronization of almost
all kinds of coupled identical neural networks with or without time-varying de-
lays. In many applications, the properties of periodic oscillatory solutions are
of great interest, it has been found applications in learning theory, which is
motivated by the fact that learning usually requires repetition. Hence, it is of
prime importance to study periodic oscillatory solutions of neural networks. In
addition, an equilibrium point can be viewed as a special periodic solution of
neural networks with arbitrary periodic. In this sense, the analysis of periodic
solutions of neural networks may be considered to be more general than that of
equilibrium point. Recently, periodic solution for BAM neural networks with
delays has been studied, for example, see [4, 6, 7, 8, 10, 11, 12, 20, 21] and
references therein. In [5, 7, 8, 10, 12], some sufficient conditions ensuring the
existence, uniqueness and global exponential stability of periodic solution were
given for BAM neural networks with constants delays. In [4, 20, 21], under the
hypothesis for the boundedness or monotonicity on the activation functions
and the differentiability on the time-varying delays, the authors gave several
sufficient conditions ensuring the existence and global exponential stability of
periodic solution for BAM neural networks with time-varying delays. However,
in some applications, one requires to use unbounded activation functions. For
example, when neural networks are designed for solving optimization problems
in the presence of constrains (linear, quadratic, or more general programming
problems), unbounded activations modeled by diode-like exponential-type func-
tions are needed to impose constraints satisfaction. The extension of the quoted
results to the unbounded case is not straightforward. When considering the
widely employed piecewise-linear neural networks, infinite intervals with zero
slope are present in activations, it is of great interest to drop the assumptions
of monotonicity. Therefore, it seems that for some purposes, nonmonotonic
functions might be better candidates for neural activation in designing and im-
plementing an artificial neural networks. Motivated by the above discussion,
in [22], the authors were concerned with the following model:

dui(t)

dt
= −ai(t)ui(t)(1.1)

+
m∑
j=1

hij(t)fj(λjvj(t− τij(t)) + Ii(t), i = 1, 2, . . . , n
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dvj(t)

dt
= −bj(t)vj(t)

+

n∑
i=1

wji(t)gi(µiui(t− σji(t)) + Jj(t), j = 1, 2, . . . ,m,

for t > 0, with initial value conditions

(1.2)


ui(s) = ϕi(s), i = 1, 2, . . . , n, s ∈ [−σ, 0], σ = max

1≤i≤n,1≤j≤m,0≤t≤ω
{σji(t)}

vj(s) = ψj(s), j = 1, 2, . . . ,m, s ∈ [−τ, 0], τ = max
1≤i≤n,1≤j≤m,0≤t≤ω

{τij(t)}.

in which, u(t) = (u1(t), u2(t), . . . , un(t))
T ∈ Rn, v(t)=(v1(t), v2(t), . . . , vm(t))T

∈ Rm, ui(t) and vj(t) are the state of the ith neurons from the neural field
FU and the jth neurons from the neural field FV at time t, respectively; fj , gi
denote the activation functions of the jth neurons from FV and the ith neurons
from FU at time t, respectively; Ii(t) and Jj(t) denote the external inputs on the
ith neurons from FU and the jth neurons from FV , respectively; τij(t) and σji(t)
correspond to the transmission delays and τij(t) > 0 and σji(t) > 0; ai(t) > 0
and bj(t) > 0 represent the rate with which the ith neuron from FU and the
jth neurons from FV will reset their potential to the resting state in isolation
when disconnected from the networks and external inputs, respectively; hij(t)
and wji(t) denote the connection strengths; λj > 0 and µi > 0 are constants,
correspond to the neural gains associated with the neural activations [3, 13].

In [22], the authors gave some novel sufficient conditions ensuring the exis-
tence, uniqueness, and global exponential stability of periodic solution for the
system (1.1) with both periodic coefficients and periodic time-varying delays
by using analytic methods, inequality technique and M -matrix theory.

However, to the best of our knowledge, the results on asymptotic stability
of periodic solution of the system (1.1) are scarce. So, in this paper, the
objective of us is to establish new sufficient conditions ensuring the existence,
uniqueness, and global asymptotic stability of periodic solution for the system
(1.1) with both periodic coefficients and periodic time-varying delays by using
coincidence degree theory, inequality technique and Lyapunov functional. Our
results on the existence, uniqueness, and global stability of periodic solution
for the system (1.1) with both periodic coefficients and periodic time-varying
delays not only remove the hypotheses as required in [5, 20, 21] for boundedness
and monotonicity on the activation functions and remove the restriction that
the value of activation functions at zero point is zero in [12, 10], but also are
more concise than those obtained in [4, 6, 7, 8, 10, 12, 20, 21, 22] and more
easy to verified. In our results of stability of periodic solution, we only need the
activation functions satisfy Lipschitz condition and the parameters satisfy two
very simple inequalities, while in [22], the matrix of parameters is required to
be a complicatedM matrix, while in [12], one hand, the matrix of parameters is
required to be a complicated M matrix, on the other hand, the parameters are
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needed to satisfy four complicated inequalities, while in [10], the parameters
are needed to satisfy four very complicated inequalities.

The paper is organized as follows. In Section 2, we establish the existence
and uniqueness of a periodic solution for the system (1.1) by using coincidence
degree theory. In Section 3, we establish the global asymptotic stability of
a periodic solution for the system (1.1) by constructing a proper Lyapunov
functional. Finally, a example is given to demonstrate the effectiveness of our
results on global asymptotic stability.

2. Existence and uniqueness of a periodic solution

In this section, we first establish the existence of a periodic solution by
applying coincidence degree theory. To establish the existence of at least a
periodic solution by applying coincidence degree theory, we recall some basic
tools in the frame work of Mawhin’s coincidence degree [14] that will be used
to investigate the existence of periodic solutions.

Let X, Z be Banach spaces, L: Dom L ⊂ X → Z be a linear mapping
and N : X → Z be a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dimKerL = codimImL < ∞ and ImL
is closed in Z. If L is a Fredholm mapping of index zero, then there exist
continuous projectors P : X → X and Q : Z → Z such that ImP = KerL and
ImL = KerQ = Im(I − Q). It follows that L/DomL∩KerP : (I − P )X → ImL
is invertible. We denote the inverse of the map L/DomL∩KerP by Kp. If Ω is
an open bounded subset of X, the mapping N will be called L-compact on Ω̄
if (QN)(Ω̄) is bounded and Kp(I − Q)N : Ω̄ → X is compact. Since ImQ is
isomorphic to Ker L, there exists an isomorphism J : ImQ→ KerL.

In the proof of our existence theorem, we will use the continuation theorem
of Gaines and Mawhin ([14]).

Lemma 2.1 (Continuation Theorem). Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω̄. Suppose

(a) Lx ̸= λN(x), ∀λ ∈ (0, 1), x ∈ ∂Ω;
(b) QN(x) ̸= 0, ∀x ∈ KerL ∩ ∂Ω;
(c) deg(JQNx,Ω ∩KerL, 0) ̸= 0.

Then Lx = Nx has at least one solution in DomL ∩ Ω̄.

For the sake of convenience, we introduce some notations as follows: | · |
denotes the norm in R, f = max0≤t≤ω |f(t)|, f = min0≤t≤ω |f(t)|, where f(t)
is a continuously periodic function with common period ω.

Our main result on the existence and uniqueness of a periodic solution for
the system (1.1) is stated in the following theorem.

Theorem 2.1. We assume that the following conditions hold:
(i) ai(t), bj(t), hij(t), wji(t), τij(t), σji(t), Ii(t), Jj(t) are continuously periodic

functions on t ∈ [0,+∞) with common period ω > 0, i = 1, 2, . . . , n; j =
1, 2, . . . ,m;
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(ii) There exist positive constants Aj (j = 1, 2, . . . ,m) such that for ∀x, y ∈
R,

|fj(x)− fj(y)| ≤ Aj |x− y|;
(iii) There exist positive constants Bi (i = 1, 2, . . . , n) such that for ∀x, y ∈ R,

|gi(x)− gi(y)| ≤ Bi|x− y|;

(iv) There exist two positive constants li > 1 (i = 1, 2) with

ai >
m∑
j=1

hijAjλj l1 and bj >
n∑

i=1

wjiBiµil2

such that 0 < 1
1−τ ′

ij
< l1 and 0 < 1

1−σ′
ji
< l2, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Then the system (1.1) has one unique ω-periodic solution.

Proof. Part 1. The proof of existence of a periodic solution. In order to apply
Lemma 2.1 to the system (1.1). Let

X =
{
u = (u1, u2, . . . , un, v1, v2, . . . , vm)T ∈ C(R,Rm+n) : u(t+ ω) = u(t)

}
and

Z =
{
z ∈ C(R,Rm+n) : z(t+ ω) = z(t)

}
.

Define

∥u∥ = max
t∈[0,ω]

n∑
i=1

|ui(t)|+ max
t∈[0,ω]

m∑
j=1

|vj(t)|, u ∈ X or Z.

Equipped with the above norm ∥ · ∥, X and Z are Banach spaces.
Let for u ∈ X,

Nu =

(
Hi(t)
Kj(t)

)
=

 −ai(t)ui(t) +
m∑
j=1

hij(t)fj(λjvj(t− τij(t)) + Ii(t)
]

−bj(t)vj(t) +
n∑

i=1

wji(t)gi(µiui(t− σji(t)) + Jj(t)
]
 ,

Lu = u′ =
du(t)

dt
, Pu =

1

ω

∫ ω

0

u(t)dt, u ∈ X, Qz =
1

ω

∫ ω

0

z(t)dt, z ∈ Z.

Then it follows that KerL = Rm+n, ImL = {z ∈ Z :
∫ ω

0
z(t)dt = 0} is closed

in Z, dimKerL = m+ n = codimImL and P,Q are continuous projectors such
that

ImP = KerL, KerQ = ImL = Im(I −Q).

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (to L) Kp : ImL→ KerP ∩DomL is given by

Kp(z) =

∫ t

0

z(s)ds− 1

ω

∫ ω

0

∫ s

0

z(t)dtds.
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Then

QNu =



1
ω

∫ ω

0
H1(s)ds

1
ω

∫ ω

0
H2(s)ds
...

1
ω

∫ ω

0
Hn(s)ds

1
ω

∫ ω

0
K1(s)ds

1
ω

∫ ω

0
K2(s)ds
...

1
ω

∫ ω

0
Km(s)ds


and

Kp(I−Q)Nu=



f t0H1(s)ds− 1
ω

∫ ω

0

∫ t

0
H1(s)dsdt+ ( 12 − t

ω )
∫ ω

0
H1(s)ds

f t0H2(s)ds− 1
ω

∫ ω

0

∫ t

0
H2(s)dsdt+ ( 12 − t

ω )
∫ ω

0
H2(s)ds

...

f t0Hn(s)ds− 1
ω

∫ ω

0

∫ t

0
Hn(s)dsdt+ ( 12 − t

ω )
∫ ω

0
Hn(s)ds

f t0K1(s)ds− 1
ω

∫ ω

0

∫ t

0
K1(s)dsdt+ ( 12 − t

ω )
∫ ω

0
K1(s)ds

...

f t0Km(s)ds− 1
ω

∫ ω

0

∫ t

0
Km(s)dsdt+ ( 12 − t

ω )
∫ ω

0
Km(s)ds


.

Obviously, QN and KP (I − Q)N are continuous. It is not difficult to show
that Kp(I − Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X by using
the Arzela-Ascoli theorem. Moreover, QN(Ω̄) is clearly bounded. Thus, N is
L-compact on Ω̄ with any open bounded set Ω ⊂ X.

The conditions (i) and (ii) in Theorem 2.1 imply that ∀x ∈ R, i = 1, 2, . . . , n,
j = 1, 2, . . . ,m,

|fj(x)| ≤ Aj |x|+ |fj(0)|(2.1)

and

|gi(x)| ≤ Bi|x|+ |gi(0)|.(2.2)

Corresponding the operator equation Lx = λNx, λ ∈ (0, 1), we have for i =
1, 2, . . . , n; j = 1, . . . ,m,

(2.3)

{
dui(t)

dt = λHi(t),
dvj(t)
dt = λKj(t).

Assume that u ∈ X is a solution of the system (2.3) for some λ ∈ (0, 1).
Multiplying the first equation of the system (2.3) by ui(t) and integrating over
[0, ω], we have

(2.4)

∫ ω

0

ui(t)
{
− ai(t)ui(t)) +

m∑
j=1

hij(t)fj(λjvj(t− τij(t))) + Ii(t)
]}
dt = 0.
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Multiplying the second equation of the system (2.3) by vj(t) and integrating
over [0, ω], we have

(2.5)

∫ ω

0

vj(t)
{
− bj(t)vj(t) +

n∑
i=1

wji(t)gi(µiui(t− σji(t))) + Jj(t)
]}
dt = 0.

By conditions (2.1) and (2.2), from (2.4) and (2.5), we obtain
(2.6)

ai

∫ ω

0

|ui(t)|2dt ≤
∫ ω

0

|ui(t)|
{ m∑

j=1

hij

(
Ajλj |vj(t− τij(t))|+ |fj(0)|

)
+ Ii

}
dt

and
(2.7)

bj

∫ ω

0

|vj(t)|2dt ≤
∫ ω

0

|vj(t)|
{ n∑

i=1

wji

(
Biµi|ui(t− σji(t))|+ |gi(0)|

)
+ Jj

}
dt.

Hence

ai

∫ ω

0

|ui(t)|2dt ≤
(∫ ω

0

|ui(t)|2dt
) 1

2 { m∑
j=1

hij

[
Ajλj

(∫ ω

0

|vj(t− τij(t))|2dt
) 1

2

+
√
ω|fj(0)|

]
+

√
ω Ii

}
and

bj

∫ ω

0

|vj(t)|2dt ≤
(∫ ω

0

|vj(t)|2dt
) 1

2 { n∑
i=1

wji

[
Biµi

(∫ ω

0

|ui(t− σji(t))|2dt
) 1

2

+
√
ω|gi(0)|

]
+

√
ω Jj

}
.

That is

ai

(∫ ω

0

|ui(t)|2dt
) 1

2 ≤
m∑
j=1

hij

[
Ajλj

(∫ ω

0

|vj(t− τij(t))|2dt
) 1

2

+
√
ω|fj(0)|

]
+
√
ω Ii(2.8)

and

bj

(∫ ω

0

|vj(t)|2dt
) 1

2 ≤
n∑

i=1

wji

[
Biµi

(∫ ω

0

|ui(t− σji(t))|2dt
) 1

2

+
√
ω|gi(0)|

]
+

√
ω Jj .(2.9)

Denoting s = t− τij(t) = g(t), σ = t− σji(t) = h(t), then∫ ω

0

|vj(t− τij(t)|dt =
∫ ω

0

|vj(s)|
1− τ ′ij(g

−1(s))
ds,(2.10)
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0

|ui(t− σji(t))|dt =
∫ ω

0

|ui(σ)|
1− σ′

ji(h
−1(σ))

dσ,(2.11)

(∫ ω

0

|vj(t− τij(t))|2dt
) 1

2

=
(∫ ω

0

|vj(s)|2

1− τ ′ij(g
−1(s))

ds
) 1

2

,(2.12)

and (∫ ω

0

|ui(t− σji(t))|2dt
) 1

2

=
(∫ ω

0

|ui(σ)|2

1− σ′
ji(h

−1(σ))
dσ
) 1

2

.(2.13)

Applying condition (iv), substituting (2.13) into (2.9) and substituting (2.12)
into (2.8) give for i = 1, . . . , n; j = 1, . . . ,m,

ai

(∫ ω

0

|ui(t)|2dt
) 1

2

≤
m∑
j=1

hijAjλj
√
l1

(∫ ω

0

|vj(t)|2dt
) 1

2

(2.14)

+
√
ω

 m∑
j=1

hij |fj(0)|+ Ii


and

bj

(∫ ω

0

|yj(t)|2dt
) 1

2

≤
n∑

i=1

wjiBiµi

√
l2

(∫ ω

0

|ui(t)|2dt
) 1

2

(2.15)

+
√
ω

(
n∑

i=1

wji|gi(0)|+ Jj

)
.

Denoting for the sake of convenience

max
1≤i≤n

{(∫ ω

0

|ui(t)|2dt
) 1

2
}
=
(∫ ω

0

|ui(t)|2dt
) 1

2

and

max
1≤j≤m

{(∫ ω

0

|vj(t)|2dt
) 1

2
}
=
(∫ ω

0

|vj(t)|2dt
) 1

2

.

For (2.14) and (2.15), we consider two possible cases:

(i)
(∫ ω

0

|vj(t)|2dt
) 1

2 ≤
(∫ ω

0

|ui(t)|2dt
) 1

2

;

(ii)
(∫ ω

0

|vj(t)|2dt
) 1

2

>
(∫ ω

0

|ui(t)|2dt
) 1

2

.

(i) When
( ∫ ω

0
|vj(t)|2dt

) 1
2 ≤

( ∫ ω

0
|ui(t)|2dt

) 1
2

, from (2.14), we haveai − m∑
j=1

hijAjλj
√
l1

(∫ ω

0

|ui(t)|2dt
) 1

2 ≤
√
ω
( m∑

j=1

hi0j |fj(0)|+ Ii0

)
,
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from which and condition (iv), it follows that

(∫ ω

0

|ui(t)|2dt
) 1

2 ≤ max
1≤i≤n


√
ω(

m∑
j=1

hij |fj(0)|+ Ii)

ai −
m∑
j=1

hijAjλj
√
l1

 def
= d1.

Therefore (∫ ω

0

|vj(t)|2dt
) 1

2 ≤
(∫ ω

0

|ui(t)|2dt
) 1

2 ≤ d1.(2.16)

(ii) When
( ∫ ω

0
|vj(t)|2dt

) 1
2

>
( ∫ ω

0
|ui(t)|2dt

) 1
2

, from (2.15), we have

(∫ ω

0

|vj(t)|2dt
) 1

2 ≤ max
1≤j≤m


√
ω(

n∑
i=1

wji|gi(0)|+ Jj)

bj −
n∑

i=1

wjiBiµi

√
l2

 def
= d2.

Therefore (∫ ω

0

|ui(t)|2dt
) 1

2 ≤
(∫ ω

0

|vj(t)|2dt
) 1

2 ≤ d2.(2.17)

Then from (2.16) and (2.17), we obtain for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,(∫ ω

0

|ui(t)|2dt
) 1

2

< max{d1, d2}
def
= d(2.18)

and (∫ ω

0

|vj(t)|2dt
) 1

2

< max{d1, d2} = d.(2.19)

From the first equation of the system (2.3), (2.10), (2.18) and (2.19), it follows
that ∫ ω

0

|u′i(t)|dt(2.20)

≤ ai

∫ ω

0

|ui(t)|dt+
m∑
j=1

hijAjλj

(∫ ω

0

|vj(t− τij(t))|dt+ ω|fj(0)|
)
+ ωIi

≤ ai
√
ω

(∫ ω

0

|ui(t)|2dt
) 1

2

+

m∑
j=1

hijAjλj l1
√
ω
(∫ ω

0

|vj(t)|2dt
) 1

2

+ ω

 m∑
j=1

hij |fj(0)|+ Ii


< ai

√
ωd+

√
ω

m∑
j=1

hijAjλj l1
√
ωd+ ω

 m∑
j=1

hij |fj(0)|+ Ii

 def
= c1.
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Similarly, from the second equation of the system (2.3), (2.11), (2.18) and
(2.19), it follows that there exists a positive constant c2 such that∫ ω

0

|v′j(t)|dt < c2.(2.21)

From (2.18) and (2.19), it follows that there exist points ti and tj such that

|ui(ti)| <
d√
ω

(2.22)

and

|vj(tj)| ≤
d√
ω
.(2.23)

Since for ∀t ∈ [0, ω],

|ui(t)| ≤ |ui(ti)|+
∫ ω

0

|u′i(t)|dt

and

|vj(t)| ≤ |vj(tj)|+
∫ ω

0

|v′j(t)|dt,

then from (2.20)-(2.23), we have

|ui(t)| ≤
d√
ω

+ c1

and

|vj(t)| ≤
d√
ω

+ c2.

Obviously, d√
ω
, c1, c2 are all independent of λ. Now let

Ω =
{
u = (u1, u2, . . . , un; v1, v2, . . . , vm)T ∈ X :

∥u∥ < n(
d√
ω

+ r1 + c1) +m(
d√
ω

+ r2 + c2)
}
,

where r1, r2 are two chosen positive constants such that the bound of Ω is larger.
Then Ω are bounded open subsets of X. Hence Ω satisfies the requirement (a)
in Lemma 2.1. Next we prove that (b) in Lemma 2.1 holds. If it is not true,
then when u ∈ ∂Ω ∩KerL = ∂Ω ∩ Rm+n, we have

QNu

=
(
1

ω

∫ ω

0

H1(t)dt,
1

ω

∫ ω

0

H2(t)dt, . . . ,
1

ω

∫ ω

0

Hn(t)dt;
1

ω

∫ ω

0

K1(t)dt, . . . ,
1

ω

∫ ω

0

Km(t)dt

)T

= (0, . . . , 0)T .
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Therefore there exist points ξi(i = 1, 2, . . . , n) and ηj(j = 1, 2, . . . ,m) such that{
Hi(ξi) = 0,
Kj(ηj) = 0.

From this and following the arguments of (2.22) and (2.23), we have for ∀i =
1, 2, . . . , n; j = 1, 2, . . . ,m, t ∈ [0, ω]

|ui(t)| <
d√
ω

and

|vj(t)| <
d√
ω
.

Hence

∥u∥ < n
d√
ω

+m
d√
ω
.

Thus u ∈ Ω∩Rm+n. This contradicts the fact that u ∈ ∂Ω∩Rm+n. Hence this
proves (b) in Lemma 2.1 holds. Finally, we show that (c) in Lemma 2.1 holds.
We only need to prove that deg

{
−JQNu,Ω ∩KerL, (0, 0)T

}
̸= (0, 0, . . . , 0)T .

Now we show that

deg
{
−JQNu,Ω ∩KerL, (0, 0, . . . , 0)T

}
= deg

{(
a1u1, a2u2, . . . , anun; b1v1, . . . , bmvm

)T
,Ω ∩KerL, (0, . . . , 0)T

}
.

To this end, we define a mapping ϕ : DomL× [0, 1] → X by

ϕ(u1, u2, . . . , un; v1, v2, . . . , vm, µ)

= − µ

ω

(∫ ω

0

H1(t)dt,

∫ ω

0

H2(t)dt, . . . ,

∫ ω

0

Hn(t)dt,

∫ ω

0

K1(t)dt, . . . ,

∫ ω

0

Km(t)dt
)

+ (1− µ)(a1u1, a2u2, . . . , anun; b1v1, . . . , bmvm),

where µ ∈ [0, 1] is a parameter. We show that when u ∈ ∂Ω ∩ KerL =
∂Ω ∩ Rm+n, ϕ(u1, u2, . . . , un; v1, . . . , vm, µ) ̸= (0, 0, . . . , 0)T . If it is not true,
then when u ∈ ∂Ω ∩ KerL = ∂Ω ∩ Rm+n, ϕ(u1, u2, . . . , un; v1, . . . , vm, µ) =
(0, 0, . . . , 0)T . Thus constant vector u with u ∈ ∂Ω satisfies for i = 1, 2, . . . , n,
j = 1, 2, . . . ,m,

µ

ω

∫ ω

0

{
ai(t)ui −

m∑
j=1

hij(t)fj(λjvj)− Ii(t)
}
dt+ (1− µ)aiui = 0,(2.24)

µ

ω

∫ ω

0

{
bj(t)vj −

n∑
i=1

wji(t)gi(µiui)− Jj(t)
}
dt+ (1− µ)bjvj = 0.(2.25)

We make the following claims:

Claim 1. |ui|∗ < d√
ω
+ c1 + r1. Otherwise, |ui|∗ ≥ d√

ω
+ c1 + r1. We con-

sider two possible cases: (a) |vj |∗ ≤ |ui|∗;(b) |vj |∗ > |ui|∗, where |vj |∗ =
max1≤j≤m{|vj |}, |ui|∗ = max1≤i≤n{|ui|}.
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(a) When |vj |∗ ≤ |ui|∗, we have

µ

ω

∫ ω

0

ui

{
ai(t)ui −

m∑
j=1

hij(t)fj(λjvj)− Ii(t)
}
dt+ (1− µ)aiu

2
i

≥ µ[aiu
2
i −

m∑
j=1

hij |ui|(λjAj |vj |+ |fj(0)|)− Ii|ui|] + (1− µ)aiu
2
i

≥ ai|ui|2 −
m∑
j=1

hij(λjAj |vj ||ui|+ |ui||fj(0)|)− Ii|ui|.

Then

ai(|ui|∗)2 −
m∑
j=1

hij(Ajλj |ui||vj |+ |ui||fj(0)|)− Ii|ui|∗

> ai(|ui|∗)2 −
m∑
j=1

hij(Ajλj |ui|∗|ui|∗ + |ui|∗|fj(0)|)− Ii|ui|∗

> |ui|∗
{
(ai −

m∑
j=1

hijAjλj)(
d√
ω

+ c1 + r1)−
m∑
j=1

hijAjλj |fj(0)| − Ii

}
> |ui|∗(c1 + r1)(ai −

m∑
j=1

hijAjλj)

> 0,

which contradicts (2.24).
(b) When |vj |∗ > |ui|∗, we have

µ

ω

∫ ω

0

vj

{
bj(t)vj −

n∑
i=1

wji(t)gi(µiui)− Jj(t)
}
dt+ (1− µ)bjv

2
j

≥ µ[bjv
2
j −

n∑
i=1

wji|vj |(µiBi|ui|+ |gi(0)|)− Jj |vj |] + (1− µ)bjv
2
j

≥ bj |vj |2 −
n∑

i=1

wji(µiBi|vj ||ui|+ |vj ||fj(0)|)− Jj |vj |.

Then

bj(|vj |∗)2 −
n∑

i=1

wji(Biµi|ui||vj |+ |vj ||gi(0)|)− Jj |vj |∗

> bj(|vj |∗)2 −
n∑

i=1

wji(Biµi|vj |∗|vj |∗ + |vj |∗|fj(0)|)− Jj |vj |∗

> |vj |∗
{
(bj −

n∑
i=1

wjiBiµi)(
d√
ω

+ c2 + r2)−
n∑

i=1

wjiBiµi|gi(0)| − Jj

}
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> |vj |∗(c2 + r2)(bj −
n∑

i=1

wjiBiµi)

> 0,

which contradicts (2.25). From the arguments of (a) and (b), Claim 1 holds.

Claim 2. |vj |∗ ≤ d√
ω
+ c2 + r2. Otherwise, |vj |∗ > d√

ω
+ c2 + r2. We consider

two possible cases: (a) |ui|∗ ≤ |vj |∗; (b)|ui|∗ > |vj |∗. This arguments of (a) and
(b) are similar to this arguments of (b) and (a) in Claim 1, then the proof is
omitted. Hence Claim 2 holds. Thus, |ui| < d√

ω
+ c1 + r1, i = 1, 2, . . . , n and

|vj | < d√
ω
+ c2 + r2, j = 1, 2, . . . ,m. Then u ∈ Ω ∩ Rm+n. This contradicts

the fact u ∈ ∂Ω∩Rm+n. According to topological degree theory and by taking
J = I since KerL = ImQ, we obtain,

deg
{
−JQNu,Ω ∩KerL, (0, 0)T

}
= deg

{
ϕ(u1, u2, . . . , un; v1, v2, . . . , vm, 1),Ω ∩KerL, (0, 0)T

}
= deg

{
ϕ(u1, u2, . . . , un; v1, v2, . . . , vm, 0),Ω ∩KerL, (0, 0)T

}
= deg

{(
a1u1, a2u2, . . . , anun; b1v1, . . . , bmvm

)T
,Ω ∩KerL, (0, . . . , 0)T

}
̸= 0.

So far, we have proved that Ω satisfies all the assumptions in Lemma 2.1.
Therefore, the system (1.1) has at least one ω-periodic solutions.

Part 2. The proof of uniqueness of a periodic solution. Let

u = (u1(t), u2(t), . . . , un(t); v1(t), v2(t), . . . , vm(t))T ,

u∗ = (u∗1(t), u
∗
2(t), . . . , u

∗
n(t); v

∗
1(t), v

∗
2(t), . . . , v

∗
m(t))T

be two ω periodic solutions of the system (1.1). Denote∫ ω

0

(ui(t)− u∗i (t))
2dt = max

1≤i≤n
{
∫ ω

0

(ui(t)− u∗i (t))
2dt},∫ ω

0

(vj(t)− v∗j (t))
2dt = max

1≤j≤m
{
∫ ω

0

(vj(t)− v∗j (t))
2dt}.

From the system (1.1), we have

u′i(t)− (u∗i )
′(t) = − ai(t)(ui(t)− u∗i (t))

+
m∑
j=1

hij(t)
{
fj(λjvj(t− τij(t)))− fj(λjv

∗
j (t− τij(t)))

}
and

v′j(t)− (v∗j )
′(t) = − bj(t)(vj(t)− v∗j (t))

+
n∑

i=1

wji(t)
{
gi(µiui(t− σji(t)))− gi(µiu

∗
i (t− σji(t)))

}
.
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Then from conditions (iv), (ii) and (iii), we have

ai

∫ ω

0

(ui(t)− u∗i (t))
2dt

(2.26)

≤
m∑
j=1

hij

∫ ω

0

λjAj |ui(t)− u∗i (t)||vj(t− τij(t))− v∗j (t− τij(t))|dt

≤
m∑
j=1

hijλjAj

(∫ ω

0

|ui(t)− u∗i (t)|2dt
) 1

2
(∫ ω

0

|vj(t− τij(t))− v∗j (t− τij(t))|2dt
) 1

2

≤
m∑
j=1

hijλjAj

√
l1

(∫ ω

0

|ui(t)− u∗i (t)|2dt
) 1

2
(∫ ω

0

|vj(t)− v∗j (t)|2dt
) 1

2

and

bj

∫ ω

0

(vj(t)− v∗j (t))
2dt(2.27)

≤
n∑

i=1

wjiµiBi

√
l2

(∫ ω

0

|vj(t)− v∗j (t)|2dt
) 1

2
(∫ ω

0

|ui(t)− u∗i (t)|2dt
) 1

2

.

From (2.26) and (2.27), we have

ai

(∫ ω

0

(ui(t)− u∗i (t))
2dt
) 1

2

(2.28)

≤
m∑
j=1

hijλjAj

√
l1

(∫ ω

0

|vj(t)− v∗j (t)|2dt
) 1

2

and

bj

(∫ ω

0

(vj(t)− v∗j (t))
2dt
) 1

2

(2.29)

≤
n∑

i=1

wjiµiBi

√
l2

(∫ ω

0

|ui(t)− u∗i (t)|2dt
) 1

2

.

Substituting (2.29) into (2.28) gives, for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

(
ai −

m∑
j=1

hijλjAj

√
l1

n∑
i=1

wjiµiBi

√
l2

bj

)(∫ ω

0

(ui(t)− u∗i (t))
) 1

2 ≤ 0.

Then for i = 1, 2, . . . , n,(∫ ω

0

(ui(t)− u∗i (t))
2dt
) 1

2

= 0.

Hence for i = 1, 2, . . . , n,

ui(t) = u∗i (t).
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Similarly, substituting (2.28) into (2.29) gives for j = 1, 2, . . . ,m,

vj(t) = v∗j (t).

Therefore the proof of uniqueness is complete. This completes the proof of
Theorem 2.1. □

3. Globally asymptotic stability of the unique periodic solution

In this section, by constructing a Lyapunov functional, we derive new suf-
ficient conditions for the global asymptotic stability of the unique periodic
solution of the system (1.1).

Theorem 3.1. In addition to conditions (i), (ii), (iii) in Theorem 2.1, we
assume further that the following conditions hold:

(H1) There exists two positive constants li ≥ 1 (i = 1, 2) with

ai > max{
m∑
j=1

hijAjλj l1,
m∑
j=1

wjiµiBil2} and

bj > max{
n∑

i=1

wjiBiµil2,
n∑

i=1

hijλjAjl1}

such that

0 <
1

1− τ ′ij
< l1,

0 <
1

1− σ′
ji

< l2;

(H2) There exist constants σji and τij , i = 1, 2, . . . , n; j = 1, 2, . . . ,m, such
that

0 < σij(t) < σij , 0 < τji(t) < τji.

Then the unique ω periodic solution of the system (1.1) is globally asymptotically
stable.

Proof. By Theorem 2.1, in view of (H1), system (1.1) has a unique ω periodic
solution, say, u∗(t) = (u∗1(t), u

∗
2(t), . . . , u

∗
n(t); v

∗
1(t), v

∗
2(t), . . . , v

∗
m(t))T . Suppose

that u(t) = (u1(t), u2(t), . . . , un(t); v1(t), v2(t), . . . , vm(t))T is any ω periodic
solution of the system (1.1) with the initial conditions (1.2).

We define a Lyapunov functional as follows for t > 0, i = 1, 2, . . . , n; j =
1, 2, . . . ,m,

V (ui(t), vj(t)) =

n∑
i=1

|ui(t)− u∗i (t)|+
m∑
j=1

|vj(t)− v∗j (t)|(3.1)

+
n∑

i=1

m∑
j=1

hijλjAj

∫ t

t−τij(t)

|vj(σ)− v∗j (σ)|
1− τ ′ij(g

−1(σ))
dσ
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+

n∑
i=1

m∑
j=1

wjiµiBi

∫ t

t−σji(t)

|ui(σ)− u∗i (σ)|
1− σ′

ji(h
−1(σ))

dσ,

where, t− τij(t) = g(t), t− σji(t) = h(t).
Calculating the upper right derivative D+V (ui(t), vj(t)) of V (ui(t), vj(t))

along the solutions of the system (1.1), we obtain from conditions (ii) and (iii),

D+V (ui(t), vj(t))

(3.2)

=
n∑

i=1

[
− ai(t)|ui(t)− u∗i (t)|+

m∑
j=1

hijλjAj |vj(t− τij(t))− v∗j (t− τij(t))|
]

+

m∑
j=1

[
− bj(t)|vj(t)− v∗j (t)|+

n∑
i=1

wjiµiBi|ui(t− σji(t))− u∗i (t− σji(t))|
]

+
n∑

i=1

m∑
j=1

hijλjAj

[ |vj(t)− v∗j (t)|
1− τ ′ij(g

−1(t))
− |vj(t− τij(t))− v∗j (t− τij(t))|

]
+

n∑
i=1

m∑
j=1

wjiµiBi

[ |ui(t)− u∗i (t)|
1− σ′

ji(h
−1(t))

− |ui(t− σji(t))− u∗j (t− σji(t))|
]

≤ −
n∑

i=1

(ai −
m∑
j=1

wjiµiBil2)|ui(t)− u∗i (t)|

−
m∑
j=1

(bj −
n∑

i=1

hijλjAj l1)|vj(t)− v∗j (t)|.

In view of condition (iv), it follows that D+V (ui(t), vj(t)) < 0 for ui(t) ̸=
u∗i (t), vj(t) ̸= v∗j (t). Hence, by the Lyapunov-type theorem in functional dif-
ferential equations we can conclude that the unique ω periodic solution of the
system (1.1) is globally asymptotically stable. □

4. An example

Example 1. Consider the following BAM neural networks with time-varying
delays:

(4.1)

du1(t)

dt
= −(9 + sin t)u1(t) + v1[t− (1 +

sin t

2
)] + sin t,

dv1(t)

dt
= −(8 + cos t)v1(t) + u1[t− (1 +

sin t

3
)] + cos t.

In Theorem 3.1, A1 = 1, B1 = 1, l1 = 2, l2 = 3, τ11 = 3
2 , σ11 = 4

3 , h11 = 1,
w11 = 1, λ1 = µ1 = 1, a1 = b1 = 2.
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It is easy to prove that all conditions in Theorem 3.1 are satisfied. By
Theorem 3.1, the system (4.1) has a unique ω periodic solution which is globally
asymptotically stable.
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