• Title/Summary/Keyword: Lyapunov Function

Search Result 493, Processing Time 0.03 seconds

A partial feedback linearization control of inverted pendulum by using nonlinear additional input (비선형 추가입력을 이용한 도립 진자의 부분 궤환 선형화 제어기 설계)

  • Kim, Yong-Jun;Yoem, Dong-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.58-62
    • /
    • 2002
  • This paper proposes a new nonlinear controller to swing-up an inverted pendulum system mounted on a car. This controller considers not only the pendulum but also the displacement of the cart. A single-input multi-output system is considered to control the inverted pendulum by using partial feedback linearization and nonlinear additional input. The asymptotic stability of the system is shown by using Lyapunov function. The simulation results show effectiveness of the proposed controller.

  • PDF

Adaptive robust hybrid position/force control for a uncertain robot manipulator

  • Ha, In-Chul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.426-426
    • /
    • 2000
  • When real robot manipulators arc mathematically modeled, uncertainties are not avoidable. The uncertainties are often nonlinear and time varying, The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance and etc. We proposed a class of robust hybrid position/force control of manipulators and provided the stability analysis in the previous work. In the work, we propose a class of adaptive robust hybrid position/force control of manipulators with bound estimation and the stability based on Lyapunov function is presented. Especially, this controller does not need the information of uncertainty bound. The simulation results are provided to show the effectiveness of the algorithm.

  • PDF

Robust control design applicable to general flexible joint manipulators (일반적인 유연조인트 로봇에 부합되는 견실제어설계)

  • Kim, Dong-Hwan;Chen, Ye-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 1998
  • 불확실한 변수와 비선형성을 가지는 유연조인트 로봇의 견실제어 방안을 제시한다. 그리고 본 시스템에서 불확실구조는 일치성을 유지하지 않는 불일치성 불확실 시스템이다. 제어기는 리아노프의 방안에 근거를 두고있다. 견실제어는 연산토크법을 사용하고 삽입제어기법을 통하여 좌표변환을 통해 구성된다. 제어기 설계과정은 우선 연산토크방법에 의해 시스템 동역학에서 정격부분을 선형으로 2개의 부분시스템으로 구성한다. 이후 좌표변환을 이용하여 각 부분시스템에 제어기를 구축한다. 이 방안을 통하여 관성 행렬이 알려진 값인 경우 이 행렬의 상위한계 조건없이 제어기를 설계할 수 있다. 따라서 임의의 형태의 로봇에도 적용 가능한 제어알고리즘이 된다. 설계된 견실제어는 변환된 시스템이나 원시스템 모두 실용적 안정성을 보장한다. 이 변환은 단지 불확실변수의 최대 한계값의 정보만을 요구한다.

  • PDF

Robust control design for robots with uncertainty and joint-flexibility (불확실성 및 관절 유연성을 고려한 로봇의 견실제어기 설계)

  • M.C. Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.117-125
    • /
    • 1995
  • An improved robust control law is proposed for uncertain rigid robots. The uncertainty is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, friction, payload change, and external disturbances are all addressed. Based on the possible bound of the uncertainty, the controller is constructed. For uncertain flexible-joint robots, some feedback control terms are then added to the proposed robust control law in order to stabilize the elastic vibrations at the joints. To show that the proposed control laws are indeed applicable, the stability study based on Lyapunov function, a singular perturbation approach, and simulation results are presented.

  • PDF

Design of an Active Damping Layer Using Topology Optimization (위상 최적화를 이용한 능동 감쇠층의 설계)

  • 김태우;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

Modified Sliding Mode Control of Structures Using MR Dampers (MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어)

  • 민경원;정진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.

STABILITY OF AN SIRS EPIDEMIC MODEL WITH A VARIABLE INCIDENCE RATE AND TIME DELAY

  • Seo, Young Il;Cho, Gi Phil;Chae, Kyoung Sook;Jung, Il Hyo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 2013
  • The purpose of this paper is to prove existence of solutions of an SIRS epidemic model with time delay of continuous type and the variable incidence rate and to investigate some asymptotic behaviors of the SIRS epidemic model. An example illustrating the stability of the model is given. The results extend the corresponding results in the literature.

Control of Inverted Pendulum using Adaptive Fuzzy Sliding Mode Control (적응 퍼지 슬라이딩 모드 제어를 이용한 도립진자의 제어)

  • Seo, Sam-Jun;Seo, Ho-Joon;Kim, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2135-2137
    • /
    • 2002
  • In this paper to overcome drawback of FLC an adaptive fuzzy sliding mode controller is proposed. The fuzzy basis function to describe the fuzzy system is introduced. The system parameter in sliding mode are estimated by the indirect adaptive fuzzy control. Adaptive laws for fuzzy parameters and fuzzy rule structure are established so that the whole system is suable in the sense of Lyapunov stability. The computer simulation results for inverted pendulum system show the performance of the proposed fuzzy sliding mode controller.

  • PDF

Observer Design of SRM for Position-Velocity Estimation (SRM의 위치-속도 추정을 위한 관측자 설계)

  • Lee, Tae-Gyoo;Kim, Jung-Tae;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.219-222
    • /
    • 1994
  • This thesis describes an observer of Switched Reluctance Motor for position. velocity and torque estimation using current sening. Inductance of SRM varies trapezoidally with respect to the rotor position. This means that the inductance of each phase is a periodic function with the same period. Under this condition. the observer with a constant gain can be developed though SRM has nonlinear characteristics. Because SRM has equivalent physical meaning with each period. The stability of error system which is the difference between actual system and observer system. is analyzed using Lyapunov and variable structure theory. The effectiveness of the proposed estimation is shown by various simulation.

  • PDF

A Study on the SIIM Fuzzy Quasi-Sliding Mode Control for the Double Inverted Pendulum on a Cart (수레-2축역진자 시스템의 SIIM 퍼지 의사-슬라이딩 모드 제어에 관한 연구)

  • Chai, Chang-Hyun;Kim, Seong-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-121
    • /
    • 2018
  • In this paper, we propose the SIIM fuzzy Quasi-sliding mode controller for the system of a double inverted pendulum on a cart. Since it is difficult to handle this 6th-order system, we decoupled the entire system into three $2^{nd}$ order subsystem, and we designed the SIIM fuzzy Quasi-sliding mode controller for each subsystem, which was easy and did not require the derivation of the equivalent control. The stability of the entire system is guaranteed using Lyapunov function. The validity and robustness of the proposed controller are demonstrated through the computer simulation, and the results are compared with the results of former studies.