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ABSTRACT. The purpose of this paper is to prove existence of solutions of an SIRS epidemic
model with time delay of continuous type and the variable incidence rate and to investigate
some asymptotic behaviors of the SIRS epidemic model. An example illustrating the stability
of the model is given. The results extend the corresponding results in the literature.

1. INTRODUCTION

Mathematical epidemiology seems to have grown largely starting in the middle of the 20th
century [1, 3] and a tremendous variety of models have now been formulated, mathematically
analyzed, and applied to infectious diseases. These models are defined in mathematical model-
ing forms with respect to disease status and consist generally of three components: susceptible
(S) individuals that have been noninfected, and thus they are able to catch the disease, infected
(I) individuals who are infected can spread the disease to susceptible individuals. The time
that individuals spend in the infected state is called the infectious period; after they enter the
recovered state, and recovered (R) individuals in the recovered state are assumed to be immune
for life.

Several epidemic models and reviews on theoretical developments with stability analysis are
described in [4, 5, 7, 10]. Recently, much attention has been given to the persistence and global
stability of the epidemic model with time delay.
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In 2004, Ma et al.[6] studied the global asymptotic stability of the SIR epidemic model
with time delay given by

dS

dt
= Λ− βS(t)I(t− τ)− µ1S(t),

dI

dt
= βS(t)I(t− τ)− (µ2 + γ)I(t),

dR

dt
= γI(t)− µ3R(t).

Here the positive constant Λ is the immigration rate, assumed all newborns to be susceptible,
γ is the recovery rate of infected individuals, and µ1 ≥ 0, µ2 ≥ 0 and µ3 ≥ 0 represent the
death rates of the susceptible, infected and recovered, respectively. Also the constant τ ≥ 0 is
the time delay.

Most of previous models assumed that an incidence rate is constant and a delay term is
discrete type about an infected term and so these models may have the limits of realistic
descriptions. In order to make a more realistic situation, we propose a continuous delay
model with measure dη(s) about the delay which is in the infected term I . The function
η(s) : [0, τ ] → (−∞,∞) is nondecreasing and has

∫ τ
0 dη(s) = η(τ) − η(0) = A > 0.

Moreover, we propose a nonconstant function β(I) which is an incidence rate per unit time.
Thus, β(I)S(t)

∫ τ
0 I(t− s)dη(s) means the number of new infections in unit time. We assume

that β(I) is a positive continuous function and there exists a constant Ĩ > 0 such that β(I) is
nondecreasing on the interval [0, Ĩ]. Also, this epidemic model may have recovered individu-
als with temporary immunity, that is, the loss of immunity by immune individuals allows the
disease to become endemic. So we have the relation S → I → R → S. Note that the total
individuals N(t) = S(t) + I(t) +R(t) may be change in time t. A summary of the process is
drawn in a flow chart in Figure 1.

In this paper, we consider an SIRS epidemic model with time delay of continuous type as
follow:

dS

dt
= Λ− β(I)S(t)

∫ τ

0
I(t− s)dη(s)− µ1S(t) + δR(t), (1.1)

dI

dt
= β(I)S(t)

∫ τ

0
I(t− s)dη(s)− (µ2 + γ)I(t), (1.2)

dR

dt
= γI(t)− (µ3 + δ)R(t), (1.3)

Here δ > 0 is the rate of removed individuals who lose immunity and return to susceptible
class. γ > 0 is the recovery rate of infected individuals. All positive constants µ1, µ2 and µ3
represent the death rates of the susceptible, infected and recovered, respectively. In particular,
we consider a variable incidence rate function(infected dependent) β(I) = β0 + β1I(t)(β0 >
0, β1 ≥ 0). The aim of this paper is to prove the existence of solution of the SIRS epidemic
model (1.1)-(1.3) and investigate some asymptotic behaviors of the model (1.1)-(1.3).
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FIGURE 1. Flow chart of the mathematical model for the dynamics of epi-
demics prevalence in the individual.

We remark that Beretta et al.[2] considered the measure f(s)ds instead of the measure dη(s)
in the model (1.1)-(1.3). Here, f(s) is the fraction of vector population in which the time taken
to become infectious is s. That is assumed to be a nonnegative function on [0, τ ]: f : [0, τ ] →
[0,∞) square integrable on [0, τ ] and that satisfies:∫ τ

0
f(s)ds = 1,

∫ τ

0
sf(s)ds < +∞.

In fact, they studied global stability of an SIR epidemic model with time delays. Zhang and
Teng [8] also considered a similar form to the model (1.1)-(1.3), but they used a constant β of
incidence rate only. They studied global behavior of equilibria and permanence of the disease
about an SIRS epidemic model with time delay. We remark also that the nonlinear incidence
rates of another forms were studied(see [9, 11, 12]).

This paper is organized as follows: In Section 2, we prove the existence of solutions of the
model (1.1)-(1.3) and derive the reproduction number and equilibria of the model (1.1)-(1.3).
In Section 3, stability analysis for the SIRS epidemic model and an illustrating example is
given.
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2. EXISTENCE, EQUILIBRIA, AND REPRODUCTION NUMBER

In this section, we will show the existence and uniqueness of solutions for the model
(1.1)-(1.3) and find the equilibria and reproduction number. First the initial condition of the
model (1.1)-(1.3) is given as

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ),−τ ≤ θ ≤ 0, (2.1)

where Ψ = (φ1, φ2, φ3)
T ∈ C such that φi(θ) ≥ 0(i = 1, 2, 3) for all −τ ≤ θ ≤ 0, and C de-

note the Banach space C([−τ, 0],R3) of continuous functions mapping interval [−τ, 0] into R3

and designates the norm of an element Ψ in C by ∥Ψ∥ = sup−τ≤θ≤0{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|}.
By a biological meaning, we further assume that φi(0) > 0 for i = 1, 2, 3.

Let

Ψ =

S(t)I(t)
R(t)

 , A =

−µ1 0 δ
0 −(µ2 + γ) 0
0 γ −(µ3 + δ)

 ,

B(Ψ) =

Λ− β(φ2)φ1(t)
∫ τ
0 φ2(t− s)η(s)

β(φ2)φ1(t)
∫ τ
0 φ2(t− s)η(s)
0

 .
Then we rewrite the model (1.1)-(1.3) in the following form:

dΨ

dt
= AΨ+B(Ψ). (2.2)

We can see that the second term on the right hand side of Equation (2.2) satisfies

B(Ψ1)−B(Ψ2) ≤
(∣∣∣∣β ∫ τ

0
I1(t− s)dη(s)

∣∣∣∣
+

∣∣∣∣ββ0S1(t)∫ τ

0
I1(t− s)dη(s)

∣∣∣∣) |I1(t)− I2(t)|

+

∣∣∣∣ββ0I2(t)∫ τ

0
I2(t− s)dη(s)

∣∣∣∣ |S1(t)− S2(t)|

+(|βI2|+ |ββ0S1(t)I2(t)|) A sup
−τ≤t≤0

|I1(t− s)− I2(t− s)|

≤ M(|S1(t)− S2(t)|+ |I1(t)− I2(t)|),

where the constantM > 0 is independent of the state variable S(t) and I(t) less then Λ/µ. Let
L = max{M, ∥A∥} < ∞. Thus, we get |B(Ψ1) − B(Ψ2)| ≤ L|Ψ1 − Ψ2|, it means that the
function B is uniformly Lipschitz continuous on C. Therefore, we have the following result:

Theorem 2.1. There exists a unique solution (S(t), I(t), R(t)) of the model (1.1)-(1.3) with
the initial condition (2.1).
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Now we will find Equilibria and the basic reproduction number. Let (S, I,R) be an equi-
librium point of the model (1.1)-(1.3). These equilibria can be found by solving the following
equations for S, I and R:

Λ− (β0 + β1I)SIA− µ1S + δR = 0, (2.3)

(β0 + β1I)SIA− (µ2 + γ)I = 0, (2.4)

γI − (µ3 + δ)R = 0. (2.5)

By (2.4), we get I = 0 or (β0 + β1I)SA − (µ2 + γ) = 0. Substituting I = 0 into (2.3) and
(2.5) we get R = 0 and S = Λ/µ1. Thus, disease free equilibrium is (Λ/µ1, 0, 0).

Since the mean infected period is 1/(µ2+γ) and the rate of secondary infection is β0S
∫ τ
0 dη(s),

we can see that the basic reproduction number of the model (1.1)-(1.3) is

R0 = β0ΛA/µ1(µ2 + γ).

To obtain endemic equilibria of the system(1.1)-(1.3), by solving for I when I ̸= 0, (β0 +
β1I)SA− (µ2 + γ) = 0, we must consider the following equation:

aI
2
+ bI + c = 0, (2.6)

where the constants a, b and c are given by

a = Aβ1{µ2(µ3 + δ) + µ3γ},
b = Aβ0{µ2(µ3 + δ) + µ3γ} − β1AΛ(µ3 + δ),

c = µ1(µ2 + γ)(µ3 + δ)(1−R0).

This equation may admit

I1 =
−b−

√
b2 − 4ac

2a
, I2 =

−b+
√
b2 − 4ac

2a
.

Set I1 = (−b −
√
b2 − 4ac)/2a, I2 = (−b +

√
b2 − 4ac)/2a, R1 = γI1/(µ3 + δ), R2 =

γI2/(µ3 + δ), I∗ = (I1 + I2)/2, R∗ = γI∗/(µ3 + δ), and

R0
∗ = 1− b2/4aµ1(µ2 + γ)(µ3 + δ).

If R0 > 1, then c < 0 and a is always positive. Since b2 − 4ac > 0 and |b| <
√
b2 − 4ac,

I1 is negative and I2 is positive regardless of sign b. Thus a positive solution of Equation (2.6)
is only E2 = (S2, I2, R2). If R∗

0 < R0 < 1, then c > 0 and |b| >
√
b2 − 4ac. I1 and I2 are

positive when −b > 0. Thus positive solutions of Equation (2.6) are E1 = (S1, I1, R1) and
E2 = (S2, I2, R2). If R0 < R∗

0, then b2 − 4ac < 0 and so there is no solution.
Therefore we can state the following results:

Proposition 2.2. (i) The model (1.1)-(1.3) always has a disease free equilibrium.
(ii) The model (1.1)-(1.3) has no endemic equilibrium if R0 < R∗

0

(iii) The model (1.1)-(1.3) has two endemic equilibrium if R∗
0 < R0 < 1 and b < 0

(iv) The model (1.1)-(1.3) has exactly one endemic equilibrium if R0 > 1.
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3. STABILITY ANALYSIS

In this section, we discuss the asymptotic behavior of the model (1.1)-(1.3). From the
biological consideration, we study the model (1.1)-(1.3) in the closed set

Ω =

{
(S, I,R) ∈ R3 : S ≥ 0, I ≥ 0, R ≥ 0, S + I +R ≤ Λ

µ1

}
.

Lemma 3.1. If (S(θ), I(θ), R(θ)) ∈ Ω for all θ ∈ [−τ, 0], then (S(t), I(t), R(t)) ∈ Ω for all
t ≥ 0.

Proof. See Zhang and Teng [8]. �

3.1 Disease free equilibrium
It may be that the stability varies according to the value of R0. Specifically, when R0 < 1,

it will appear locally asymptotically stable or globally asymptotically stable according to R∗
0.

Theorem 3.2. For the model (1.1)-(1.3) with initial condition(2.1), if R0 < 1, then the disease
free equilibrium is locally asymptotic stable. But it is unstable if R0 > 1. Furthermore if
R0 < R∗

0 < 1, then the equilibrium is globally asymptotically stable.

Proof. Set
x(t) = S(t)− S, y(t) = I(t)− I, z(t) = R(t)−R.

Then it follows from the model (1.1)-(1.3) that

dx

dt
= −(β0 + β1y(t) + β1I)(x(t) + S)

∫ τ

0
y(t− s)dη(s)− β1IAx(t)y(t) (3.1)

−(β0AI + β1AI
2
+ µ1)x(t)− β1SIAy(t) + δz(t),

dy

dt
= (β0 + β1y(t) + β1I)(x(t) + S)

∫ τ

0
y(t− s)dη(s) (3.2)

+(β0 + β1I)IAx(t)− [β1SIA− (µ2 + γ)]y(t) + β1IAy(t)x(t),

dz

dt
= γy(t)− (µ3 + δ)z(t). (3.3)

The linear part of the system (3.1)-(3.3) is

dx

dt
= −(β0 + β1I)S

∫ τ

0
y(t− s)dη(s)− (β0AI + β1AI

2
+ µ1)x(t) (3.4)

−β1SIAy(t) + δz(t),

dy

dt
= (β0 + β1I)S

∫ τ

0
y(t− s)dη(s) + (β0 + β1I)IAx(t) (3.5)

−[β1SIA− (µ2 + γ)]y(t),

dz

dt
= γy(t)− (µ3 + δ)z(t). (3.6)
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Let a solution of the exponential form to the system (3.4)-(3.6) be as follow:

x(t) = x0e
λt, y(t) = y0e

λt, z(t) = z0e
λt. (3.7)

Substituting (3.7) into the system (3.4)-(3.6) yield

λ

x0y0
z0

 =

−(β(I)AI − µ1 −B δ
β(I)AI B − (µ2 + γ) 0

0 γ −(µ3 + δ)

x0y0
z0

 ,
where β(I) = (β0 + β1I), B = β1SI + β(I)S

∫ τ
0 e

−λsdη(s).
The characteristic equation at E0 = (Λ/µ1, 0, 0) is

(λ+ µ1)(λ+ µ2 + γ − β0S0

∫ τ

0
e−λsdη(s))(λ+ µ3 + δ) = 0. (3.8)

Since µ1, µ3 + δ are positive, λ1 = −µ1 and λ2 = −(µ3 + δ) are negative.
Let

f(λ) = λ+ µ2 + γ − β0S0

∫ τ

0
e−λsdη(s).

If R0 > 1, then f(0) = µ2 + γ − β0S0A < 0, f(λ) → +∞ as λ → ∞. Hence there must
exist a value λ3 > 0 such that f(λ3) = 0. Thus the characteristic equation (3.8) has at least
one solution with positive real part. Therefore, E0 is unstable when R0 > 1. If R0 < 1, then
f(0) = µ2+γ−β0S0A > 0, f(λ) → −∞ as λ→ −∞. Thus there must exist a value λ3 < 0
such that f(λ3) = 0. Hence all solutions of the characteristic equation (3.8) have a negative
real part. Therefore, E0 is locally asymptotically stable when R0 < 1. Furthermore, the model
(1.1)-(1.3) has a unique equilibrium (Λ/µ1, 0, 0) when R0 < R∗

0 < 1. Hence all solutions
must be asymptotic to (Λ/µ1, 0, 0) and the disease free equilibrium is globally asymptotically
stable. �

3.2 Endemic equilibrium
Set

X = µ1
2 + 3µ1µ3 + µ3

2, Y =
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3).

We note here that µi(i = 1, 2, 3), and δ are parameters defined by the model (1.1)-(1.3).

Theorem 3.3. If the parameters satisfy the following two conditions;

(i) β(I2)
2{4µ1µ2X − Y 2}+ (3X + µ1µ3)µ1

2β1
2S2

2

−2β(I2)[(µ1 + µ3)Y − 2(µ1 + µ2)XS2β1µ1] > 0,

and

(ii) [3µ1β1S1 − 2β(I2)(µ1 + µ2)]X + µ1[µ1µ3β1S2 − β(I2)(µ1 + µ3)Y ] < 0,

then the endemic equilibrium E2 of the model (1.1)-(1.3) is asymptotically stable.
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Proof. Let us define a Lyapunov function V (ut) for the system (3.4)-(3.6) as follows,

V (ut) =
1

2
ω1(x(t) + y(t) + z(t))2 +

1

2
ω2y

2(t) +
1

2
ω3z

2(t)

+
1

2
ω2β(I2)S2

∫ τ

0

∫ t

t−s
y2(u)dudη(s). (3.9)

Here, ut = (xt, yt, zt) and ωi > 0(i = 1, 2, 3) will be given later. Then we obtain the time
derivative along the solution of (3.4)-(3.6) as follows:

dV

dt
≤ −ω1µ1x

2(t)− [ω1µ2 − ω2β1S2I2A]y
2(t)

−[ω1µ3 + ω3(µ3 + δ)]z2(t)− ω1(µ1 + µ3)x(t)z(t)

+[ω3γ − ω1(µ2 + µ3)]y(t)z(t) + [ω2β(I2)I2A− ω1(µ1 + µ2)]x(t)y(t)

= {(µ1 + µ3)
2 − 4µ1[µ3 + ω3(µ3 + δ)]}z2(t)

+{−2[ω2β(I2)I2A− ω1(µ1 + µ2)](µ1 + µ3) + [ω3γ − (µ2 + µ3)]4µ1}
×z(t)y(t) + {[ω2β(I2)I2A− (µ1 + µ2)]

2 − 4µ1(µ2 − ω2β1S2I2A)}y2(t).

Let

dV

dt
≤ pz2(t) + qz(t)y(t) +my2(t),

where

p = {(µ1 + µ3)
2 − 4µ1[µ3 + ω3(µ3 + δ)]},

q = {−2[ω2β(I2)I2A− ω1(µ1 + µ2)](µ1 + µ3) + [ω3γ − (µ2 + µ3)]4µ1},
m = {[ω2β(I2)I2A− (µ1 + µ2)]

2 − 4µ1(µ2 − ω2β1S2I2A)}.

So dV/dt is negative definite if and only if (i) p < 0 , (ii) q2 − 4pm < 0 .
Let us choose ω3 satisfying p < 0. Then we get

{(µ1 + µ3)
2 − 4µ1[µ3 + ω3(µ3 + δ)]} < 0,

(µ1 − µ3)
2

4µ1(µ3 + δ)
< ω3.
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So we can choose ω3 = (µ1 + µ3)
2/µ1(µ3 + δ) > 0. If we choose ω1 = 1, then we obtain

q2 − 4pm = {−2[ω2β(I1)I1A− (µ1 + µ2)](µ1 + µ3) + [ω3γ − (µ2 + µ3)]4µ1}2

−4{(µ1 + µ3)
2 − 4µ1[µ3 + ω3(µ3 + δ)]}{[ω2β(I2)I2A− (µ1 + µ2)]

2

−4µ1(µ2 − ω2β1S2I2A)}
= 4(µ1

2 + 3µ1µ3 + µ3
2)β(I2)

2I2
2
A2ω2

2 + {−8(µ1
2 + 3µ1µ3 + µ3

2)

×β(I2)I2A2(µ1 + µ2)− 4µ1β(I2)I2A(µ1 + µ3)[
(µ1 + µ3)

2

µ3 + δ

−µ1(µ2 + µ3)]− 4µ1β1S2I2A[(µ1 − µ3)
2 − 4(µ1 + µ3)

2]}ω2

+{4(µ1 + µ2)
2(µ1

2 + 3µ1µ3 + µ3
2) + 4µ1(µ1 + µ2)(µ1 + µ3)

×
[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]
+ 4µ1

2

[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]2
+4µ1µ2[(µ1 − µ3)

2 − 4(µ1 + µ3)
2]}.

Set

e = 4(µ1
2 + 3µ1µ3 + µ3

2)β(I2)
2I2

2
A2,

f = −8(µ1
2 + 3µ1µ3 + µ3

2)β(I2)I2A
2(µ1 + µ2)− 4µ1β(I2)I2A(µ1 + µ3)

×
[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]
− 4µ1β1S2I2A[(µ1 − µ3)

2 − 4(µ1 + µ3)
2]

g = 4(µ1 + µ2)
2(µ1

2 + 3µ1µ3 + µ3
2) + 4µ1(µ1 + µ2)(µ1 + µ3)

×
[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]
+ 4µ1

2

[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]2
+4µ1µ2[(µ1 − µ3)

2 − 4(µ1 + µ3)
2].

Denote h = ω2, H(h) = eh2 + fh+ g. Then we obtain by condition (i),

f2 − 4eg = 16I2
2
A2(3µ1

2 + 10µ1µ2 + 3µ3
2){β(I2)2{4µ1µ2(µ12 + 3µ1µ3 + µ3

2)

−
[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]2
}+ S2β1µ1{S2β1µ1(3µ1

2

+10µ1µ2 + 3µ3
2)− 2β(I2)(µ1 + µ3)

[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]
−4β(I2)(µ1 + µ2)(µ1

2 + 3µ1µ3 + µ3
2)}

= 16I2
2
A2(3µ1

2 + 10µ1µ2 + 3µ3
2){β(I2)2{4µ1µ2X − Y 2}

+(3X + µ1µ3)µ1
2β1

2S2
2 − 2β(I2)[(µ1 + µ3)Y

−2(µ1 + µ2)XS2β1µ1]} > 0.
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Since µi > 0 (i = 1, 2, 3), I2 > 0 and A > 0, the coefficient e is positive. From condition
(ii) we obtain

f = {−8(µ1
2 + 3µ1µ3 + µ3

2)β(I2)I2A(µ1 + µ2)− 4µ1β(I2)I2A(µ1 + µ3)

×
[
(µ1 + µ3)

2

µ3 + δ
− µ1(µ2 + µ3)

]
− 4µ1β1S2I2A[(µ1 − µ3)

2 − 4(µ1 + µ3)
2]}

= [3µ1β1S2 − 2β(I2)(µ1 + µ2)]X + µ1[µ1µ3β1S2 − β(I2)(µ1 + µ3)Y ] < 0

so that f2 − 4eg > 0 and −f/e > 0 . Thus we can choose positive real value ω2 and
H(ω2) < 0. Choose ω2 = −f/2e. Then H(ω2) = eω2

2 + fω2 + g < 0. Therefore
p2− 4qm < 0, that is, V (ut) is negative definite. We show that endemic equilibrium E2 of the
model (1.1)-(1.3) is asymptotically stable. �

Example 3.4. Let Λ = 1, µ1 = 0.1, µ2 = 0.4, µ3 = 0.4, δ = 0.6, γ = 0.5, A = 1,
β0 = 0.4, β1 = 0.01 in the model (1.1)-(1.3). Then we have R0 = 4.4444 > 1, S2 = 2.1790,
I2 = 1.3035, R2 = 0.6518 and so we can verify that the parameter conditions in Theorem
3.3 are satisfied; (i) = 0.0023 > 0, (ii) = −0.1178 < 0. Hence, from Theorem 3.3, the
endemic equilibrium E2 = (2.1790, 1.3035, 0.6518) of the model (1.1)-(1.3) is asymptotically
stable(see Figure 2).
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FIGURE 2. Asymptotic Behavior when the parameters Λ = 1, µ1 = 0.1,
µ2 = 0.4, µ3 = 0.4, δ = 0.6, γ = 0.5, A = 1, β0 = 0.4, β1 = 0.01,
R0 = 4.4444, and the initial condition (S0, I0.R0) = (5, 0.5, 0).
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