• Title/Summary/Keyword: Lyapunov Function

Search Result 494, Processing Time 0.026 seconds

Nonquadratic Stability Condition of Continuous Fuzzy Systems

  • Kim, Eun-Tai;Park, Min-Kee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.596-599
    • /
    • 2003
  • In this paper, a new asymptotic stability condition of continuous fuzzy system is proposed. The new stability condition considers the nonquadratic stability by using the P-matrix measure. Later the relationship of the suggested stability condition and the well-known stability condition is discussed and it is shown in a rigorous manner that the proposed criterion includes the conventional conditions.

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

Robust Adaptive Controller for MIMO Nonsquare Nonlinear Systems Using Universal Function Approximators

  • Park, Jang-Hyun;Seo, Ho-Joon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.4-40
    • /
    • 2001
  • This paper addresses the problem of designing robust adaptive output tracking control for a class of MIMO nonlinear systems which have different number of inputs and outputs The stability of the whole closed-loop system is guaranteed in the sense of Lyapunov and uniformly Itimately boundedness of the tracking error vector as well as estimated parameters are shown. In addition, we show that the restrictive assumptions on input gain matrix which is presumed in the past works can be eliminated by using proposed control law.

  • PDF

Design of An Extended Robust H$\infty$ Filter

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Cha- Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.3-77
    • /
    • 2001
  • An extended robust H$\infty$ filter is proposed for a nonlinear uncertain system. We also analyze the characteristics of the proposed filter such as an H$\infty$ performance criterion using the Lyapunov function method. The analysis results show that proposed filter has a robustness against disturbances such as process and measurement noises and against parameter uncertainties. Then the in-flight alignment for a strapdown inertial navigation system is designed using the presented filter. Simulation results show that the proposed filter effectively improve the performance.

  • PDF

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

ASYMPTOTIC STABILIZATION FOR A DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT DAMPING TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.445-468
    • /
    • 2020
  • A long-time behavior of global solutions for a dispersive-dissipative equation with time-dependent damping terms is investigated under null Dirichlet boundary condition. By virtue of an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, when damping coefficients are integrally positive and positive-negative, respectively. Moreover, under the assumptions on on-off or sign-changing damping, we derive an asymptotic stability of solutions.

Delay-dependent Fuzzy $H_2/H_{\infty}$ Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 $H_2/H_{\infty}$ 제어기 설계)

  • 김종래;정은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.19-27
    • /
    • 2004
  • A delay dependent fuzzy $H_2/H_{\infty}$ controller design method for delayed fuzzy dynamic systems is considered. Using delay-dependent Lyapunov function, the asymptotical stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor (디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF