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Abstract

In this paper, a new asymptotic stability condition of continuous fuzzy system is proposed. The new stability condition
considers the nonquadratic stability by using the p-matrix measure. Later the relationship of the suggested stability
condition and the well-known stability condition is discussed and it is shown in a rigorous manner that the proposed

criterion includes the conventional conditions.
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I. INTRODUCTION

Since the inception of the fuzzy logic by Zadeh in 1965,
fuzzy logic has found extensive application for a wide
variety of industrial systems and consumer products.
Especially, the fuzzy approaches to control have emerged
in recent years as one of the most promising research
platforms and has attracted the attention of many control
researchers.

Despite the much success and popularity in the
industrial applications, however, the stability of the fuzzy
systern remains to be an open problem and to be further
addressed. In this paper, the stability condition of
continuous fuzzy systems is discussed. The model of the
fuzzy system considered in this paper is that proposed by
Takagi and Sugeno [1].

In the recent literatures, some notable works regarding
the stability of the T-S (Takagi-Sugeno) fuzzy system
have been reported by many control theorists in [2-4].
Tanaka et al. have provided a sufficient condition for the
stability of the discrete and continuous fuzzy systems in
[3] and the references therein. Narendra attempted to
handle the similar problem without finding a common
Lyapunov matrix for the continuous fuzzy systems [4].
Recently, many fuzzy control theorists tackled the problem
by using convex optimization technique called LMI (linear
matrix inequalities) [5-8]. For example, Wang et al
suggested the analysis and design methodology of T-S
fuzzy system based on LMI [5]. Ma et al. [6] and Tseng et
al. [7] proposed the dynamic output feedback control
scheme for T-S system by adopting fuzzy observer
system. Cao et al. addressed the input saturation problem
for T-S fuzzy system [8l. In all of the aforementioned

works, Lyapunov function candidate was V= xTPx, that
is, the quadratic stability or stabilizability was considered.
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Common Lyapunov function, quadratic stability, Common similarity transform matrix.

In this paper, a new asymptotic stability condition of
continuous fuzzy system is proposed. This work 1is
motivated by [10] which addresses the stability of the
discrete-time system. The new stability condition
considers the nonquadratic stability by using the p-matrix
measure. Later the relationship of the suggested stability
condition and the well-known quadratic stability condition
reported in [3] is discussed and it is shown in a rigorous
manner that the proposed criterion includes the
conventional conditions.

The rest of the paper is organized as follows: following
the introduction, T-S fuzzy system is reviewed and the
quadratic stability condition presented in [3] is explained
briefly in Section II. Section III is the main results of this
paper. New nonquadratic stability condition is presented
and some remarks are made including the relationship with
stability condition reported in [3]. Finally some conclusions
are drawn in Section IV.

Il. CONTINUOUS T-S FUZZY SYSTEM AND
ITS QUADRATIC STABILITY CONDITION

The fuzzy system suggested by Takagi and Sugeno in
1985 [1] can represent a general class of nonlinear
systems. It is based on "fuzzy partition” of input space and
it can be viewed as the expansion of piecewise linear
partition. The fuzzy system is of the following IF-THEN
form:

R': If x(¢) is M| and x,(¢) is Mi, - x, is M,

then x= A;x (1

where xT()=[x,() x,(D x,(H1;

Ri(i=1,2,+,c) denotes the 7th fuzzy rule and
M, M, -, M, are fuzzy variables. The I/O form of the
fuzzy system of (1) is represented as in (2).
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From (1) and (2), it is noted that T-S fuzzy system
approximates a nonlinear system with a combination of
several linear systems by decomposing fuzzily the whole
input space into several partial spaces and representing
each input—-output space with each linear equation.

A sufficient condition derived by Tanaka under which
the fuzzy system of (1) is quadratically stable is as
follows:

where w'= ]Ij[le-(x,-) (2)

Theorem 1 [3]

The equilibrium of a fuzzy system of (1) or (2) is
quadratically stable in the large if there exists a common

positive definite matrix P such that
ATP+ PA; < 0 forall A, € 2,
where Q, = {A,, A,, -, A}

lll. A CRITERION FOR THE ASYMPTOTIC STABILITY

In this section, a criterion for the asymptotic stability of
the continuous fuzzy system of (1) is presented.

Theorem 2
If there exists a nonsingular similarity transform

S e R™" and a matrix measure #,(-) such that
#,(ST1TA;8) <0, forall A; e Q,
where g,(-) is the p-matrix measure corresponding
to the induced p-norm [l - I,, then there exists a common
Lyapunov function for all A; € 9, and the continuous
fuzzy system represented by (1) is asymptotically stable.

Proof

Assume that S is the nonsingular similarity transform
and Q=S"". Define V(x(9))=I1Qx(H% where |-, is
the p-norm for vector. In this paper, |l -1, will denote
the p-norm and the induced p-norm for vectors and
matrices, respectively, and z,(-) will denote the
corresponding  p-matrix measure [9]. Since S is
Wx)+0 when Wx)+0 and W(x(d)
can be a common Lyapunov function

nonsingular,
= Qx(dl5
candidate for all x (D= A;x(f), A; € 2,. For a system
represented by
x(D=A;x() (3)
the time derivative of W(x(#)) is

ﬂfﬁl = zuox(t)ll,,;,d;HQx(t)llp

To analyze the above time derivate, consider the
following Taylor’s series:

x(t+ At) = x(t)+ x(¢) At + o dt) 4)

where o(d4t) represents the higher order terms and

. _o(at)y _
lim YT, =0

4t—Q
By premultiplying (4) by @ and using (3)
Qx(t+4)= Qx(t)+ Q A; 4t x(t)+ Qo(4t)

=1+ QA; Q' 4t)Qx(t) + Qo(41)
The p-norm of @Qx(¢+ 4t) is bounded as follows:
1Qx(t+4nll, < 11+ QA;Q™ ' 2tll, 1Qx(N,+1Qo(4)l,
= I+ S " A;S4t, 11Qx(Oll,+1IQo(4nl, (B
From (5),

L et = t 102+ 20,1 Qx(0),

< lim
a0

= 4(STT AN,

- 3
l 1+ S Ajfmllj, 1 @), + | Qo(4nil, }

4t

where #,( ) is the p-matrix measure corresponding
to II-1l, 9l

Therefore, the time derivative of V{x(d) is represented
as follows:

dvdjt = 2u(S71 A9 Qx(I}.

By the premise assumption of this theorem,

aV(x(?) <0
dt :

Therefore, if the premise of the Theorem is satisfied,
() =11Qx(HII3 is a common Lyapunov function for

al x(H)=A;x(), A; = Q,, and the continuous fuzzy
system of (1) is asymptotically stable. Hl

Remark 1

(1) The p-matrix measure is defined as in (6) and can
be thought of as the directional derivative of the induced
p-norm function | -il,, as evaluated at the identity

matrix I in the direction of the given matrix.
. I+ Al ,—
p,(A)= hmu& ®)
&0 &
Thus, the definitions of the matrix measure functions

depend on p and the measure functions corresponding to
the norms || - |l;, Il -ll,, and |l Il are as follows [9]:

for x=(x;) and A=(ay)
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Norm Matrix Measure
p=00 |1zl = max |z, #eo( A) = max (a;+ Zila;)
p=1 [llxll,= 3 lxl #(A) = max;(a;+ FlayD)

n 1/2 T
=2 lzlly= (3 Inl?) | naA) = e (AZAT)

(2) Theorem 2 can be interpreted as follows: If there
exists a new transformed state space y= @x such that
the norm of the response of all the subsystems of the
fuzzy system of (1) decreases monotonously in the new
transformed domain, the fuzzy system is asymptotically
stable.

(3) Although p-norm and the corresponding induced p
norm and p-matrix measure are used in Theorem 1, if
another vector norm is available and the corresponding
induced norm and matrix measure are well-defined,
Theorem 2 can be extended to include the newly-defined
norm.

(4) In Theorem 2, the common Lyapunov function
W(x(D) =l Qx( t)IIi is not necessarily quadratic. In other

words, when there exists a nonsingular similarity

transform S € R ™" and a matrix measure #,( +) such
that

#,(ST'AS) <0, forallA; e Q,,

the continuous fuzzy system of (1) is guaranteed to be
just asymptotically stable and not necessarily quadratically
stable. However, when p=2, the common Lyapunov
function in Theorem 2 can be expressed by a quadratic
function and the guaranteed stability by the existence of
S € R™" is the quadratic stability. This is expressed in
the following Theorem 3.

Theorem 3
The continuous fuzzy system of (1) has a common
quadratic Lyapunov function Wx)=xTPx which

guarantees the quadratic stability if and only if there

exists a nonsingular similarity transform S € R ™" such
that

#g(S_lA,-S) < O, fOI' aHA, S ‘QA
where p,( ) is a 2-matrix measure corresponding to

the induced 2 -norm (spectral norm).
Proof
(&) If there exists a nonsingular similarity transform

S € R™” such that

#(S7IA8) <0, forall A; & Q,,

there exists a common Lyapunov function for all
subsystems of all x()=A4;x(H, A, 9, and the
common Lyapunov function is W x) =1 Qx4 by Theorem
2. Since the involved norm is the 2-norm (Euclidean

598

norm), the common Lyapunov function clearly becomes the
following common quadratic function as in (7) and the
fuzzy system of (1) is quadratically stable.

(x)=Qxl;=x"QTQx = x"Px %

where P=Q7Q > 0.

(=) Assume that there exists a common quadratic
Lyapunov function W(x)= xTPx for all the subsystems of
x(D=A;x(H,A; € Q4. Since P is positive definite,
there exists a nonsingular S such that Q= S~! and
P= Q7Q. For any subsystem x = A;x comprised in the
fuzzy system of (1), the time-derivative of V becomes
negative definite. Thus,

4¥ —4(x7QTQx) = x"Q"Qx+x7QQx

=x"ATQTQx+2"TQTQAx

By introducing a new variable y= Qx,

AV — ($3)TATQTQ(Sy) +(55) TQTQALSY)
= yTSTATS Ty+ y7S71A.Sy
=yT(S7'A;9) T+ S'A; Sty < 0
Therefore (S7'A;8)T+ S 'A4,S < 0 and
the statement is equivalent to the fact that

(57'A4;9"+S7'A;S
3 < 0.

ﬂz(s_lA,-S)=/1max(
Then the proof is completed.

Remark 2

It can be shown that the stability condition in Theorem
2 for the case of p=2 is equivalent to the condition in
Theorem 1 originally suggested in [3]. The new stability
condition in Theorem 2 is based on the nonquadratic
common Lyapunov function and can be thought to include
the conventional stability condition in Theorem 1. The
equivalence is directly discussed in the following Theorem
4,

Theorem 4

There exists a common positive defimte matrix P
such that

ATP+PA; < 0 foral A; e Q2,4

if and only if there exists a nonsingular similarity
transform S € R ™" such that

#,(ST1A;8) <0, forall A; € Q4.

Proof

(<) Let = S"'. Then,

-1 T -1
ﬂ2(s—1A,.S)=/1m( (S A‘S)2+S A"S) <0

o (S71A9T+857'A,8< 0
o STATQTQS+ STQTQA;S< 0
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& ST(ATP+PA)S<C 0, P=QTQ> 0

e ATP+PA; < 0

(=) The proof can be done straightforwardly by
following the above proof in a reverse order.

IV. CONCLUSION

In this paper, a sufficient condition was suggested under
which the continuous T-S fuzzy system is guaranteed to
be asymptotically stable in the large. Since the suggested
condition employs a common Lyapunov function which is
not necessarily quadratic, the condition is considered to
include the conventional stability condition of [3].

However, only consequent parts of the fuzzy system of
(1) are addressed also in this paper and the researches
regarding the effects the premise parts have on the
stability of the fuzzy system are recommended.
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