• 제목/요약/키워드: Luteolin

검색결과 293건 처리시간 0.026초

Comparative Study of the Inhibitory Effect of Luteolin and Luteolin-7-Glucoside on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Kim, Jin-Ho;Kim, Soo-Yeon;Lim, Yong;Pyo, Hyeong-Bae;Park, Byeoung-Soo;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.102.2-103
    • /
    • 2003
  • It has been previously reported that luteolin and luteolin-7-glucoside displayed the potent anti-oxidant and anti-inflammatory effects, which have also been successful in reducing vascular smooth muscle cells(VSMCs) proliferation. In this study, a possible anti-proliferative effect and its mechanism on rat aortic VSMCs by luteolin and luteolin-7-glucoside were investigated. Luteolin significantly inhibited the platelet-derived growth factor(PDGF)-BB-induced proliferation of rat aortic VSMCs. While luteolin-7-glucoside weakly inhibited the proliferation. (omitted)

  • PDF

Biological activity of flavonoids from Sonchus brachyotus

  • Lee, Jeong Min;Yim, Mi-Jin;Kim, Hyun-Soo;Ko, Seok-Chun;Kim, Ji-Yul;Shin, Jung Min;Lee, Dae-Sung
    • Fisheries and Aquatic Sciences
    • /
    • 제24권12호
    • /
    • pp.428-436
    • /
    • 2021
  • The aim of this study was to isolate and identify secondary metabolites from Sonchus brachyotus and evaluate their antioxidant and anti-inflammatory activities. In this study, we isolated three flavonoids from a 70% EtOH extract by Medium Pressure Liquid Chromatography (MPLC) and prep-High-Performance Liquid Chromatography (HPLC). To evaluate the biological activities (antioxidant and anti-inflammatory) of these flavonoids, their in vitro inhibitory activities against lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) generation, nitric oxide (NO) production, and prostaglandin E2 (PGE2) secretion were determined. We successfully identified three flavonoids, namely luteolin (1), luteolin-7-O-β-D-glucoside (2), and luteolin-7-O-β-D-glucuronide (3) by spectral analyses. Luteolin (1) at 20 ㎍/mL inhibited ROS generation, NO production, and PGE2 secretion by 48.6%, 61.28% and 12.10%, respectively, and luteolin-7-O-β-D-glucoside (2) inhibited NO and PGE2 generation by 67.03% and 20.82%, respectively. Luteolin (1) and luteolin-7-O-β-D-glucoside (2) showed similar anti-inflammatory activities; however, luteolin (1) was observed to be a stronger antioxidant. Besides antioxidant and anti-inflammatory activities, S. brachyotus extract containing luteolin (1) and luteolin-7-O-β-D-glucoside (2) is considered to possess diverse biological activities. The results indicate that S. brachyotus is an edible medicinal plant, which is believed to be significant resource of functional foods.

Luteolin inhibits H2O2-induced cellular senescence via modulation of SIRT1 and p53

  • Zhu, Ri Zhe;Li, Bing Si;Gao, Shang Shang;Seo, Jae Ho;Choi, Byung-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.297-305
    • /
    • 2021
  • Luteolin, a sort of flavonoid, has been reported to be involved in neuroprotective function via suppression of neuroinflammation. In this study, we investigated the protective effect of luteolin against oxidative stress-induced cellular senescence and its molecular mechanism using hydrogen peroxide (H2O2)-induced cellular senescence model in House Ear Institute-Organ of Corti 1 cells (HEI-OC1). Our results showed that luteolin attenuated senescent phenotypes including alterations of morphology, cell proliferation, senescence-associated 𝛽-galactosidase expression, DNA damage, as well as related molecules expression such as p53 and p21 in the oxidant challenged model. Interestingly, we found that luteolin induces expression of sirtuin 1 in dose- and time-dependent manners and it has protective role against H2O2-induced cellular senescence by upregulation of sirtuin 1 (SIRT1). In contrast, the inhibitory effect of luteolin on cellular senescence under oxidative stress was abolished by silencing of SIRT1. This study indicates that luteolin effectively protects against oxidative stress-induced cellular senescence through p53 and SIRT1. These results suggest that luteolin possesses therapeutic potentials against age-related hearing loss that are induced by oxidative stress.

T24 방광암세포에서 Luteolin과 TRAIL의 복합 처리에 따른 Apoptosis 유도 (Induction of Apoptosis by Combination Treatment with Luteolin and TRAIL in T24 Human Bladder Cancer Cells)

  • 박현수;최영현
    • 한국식품영양과학회지
    • /
    • 제42권9호
    • /
    • pp.1363-1369
    • /
    • 2013
  • 본 연구에서는 플라보노이드 계열 중의 하나인 luteolin을 이용하여 TRAIL에 저항성을 가지는 T24 방광암세포에서 TRAIL 저항성 극복 가능성을 조사하였다. 본 연구의 결과에 의하면 luteolin 및 TRAIL 각각 단독 처리 시 세포증식에 전혀 영향을 미치지 못한 농도의 복합 처리 시 세포증식억제 효과가 크게 증가하였음 알 수 있었다. 이러한 증식억제와 연관된 aspoptosis 유도는 caspase-8의 활성화에 의한 tBid의 발현 증가와 pro-apoptotic 인자인 Bax의 발현 증가로 인한 caspase-9 및 -3의 활성화로 이어지는 type II apoptosis에 의한 것이라 추측되며, 이러한 가정은 각각의 caspase 선택적 저해제를 이용하여 재확인 하였다. 본 연구결과는 TRAIL에 저항성을 보이는 암세포에 luteolin이 감수성을 높이는데 효과적일 수 있으며, 암세포에 대한 combination therapy를 위한 기초자료로 활용성이 높을 것으로 사료된다.

Luteolin Induces the Differentiation of Osteoblasts

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.99-106
    • /
    • 2010
  • Luteolin is a flavonoid that exists in a glycosylated form in celery and green pepper. Flavonoids possess antioxidant and anti-inflammatory properties and can reduce the expression of key inflammatory molecules in macrophages and monocytes. It has been reported also that some flavonoids have effects on bone metabolism. The effects of luteolin on the function of osteoblasts were investigated by measuring cell viability, alkaline phosphatase activity, type I collagen production, osteoprotegerin secretion, Wnt promoter activity, BMP-2 and Runx2 expression and calcified nodule formation. Luteolin has no effects upon osteoblast viability but induced an increase in alkaline phosphatase activity, type I collagen production and a decrease in osteoprotegerin secretion in these cells. Luteolin treatment also upregulated BMP-2 mRNA expression. These results suggest that luteolin may be a regulatory molecule that facilitates the differentiation of osteoblasts.

Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5501-5508
    • /
    • 2014
  • Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/${\beta}$-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.

Structure-Activity Relationship for Antidepressant Effect of Luteolin and Its Related Derivatives Isolated from Taraxacum mongolicum

  • Hwang, Keum Hee;Lee, Nam Kyung;Kim, Gun Hee
    • Natural Product Sciences
    • /
    • 제19권1호
    • /
    • pp.8-14
    • /
    • 2013
  • The inhibitory effect and the structure-activity relationships of luteolin and its related derivatives isolated from Taraxacum mongolicum against MAO activities were investigated. The activity-guided isolation of extract from Taraxacum mongolicum led to the isolation of three flavonoids, luteolin, diosmetin, and luteolin-7-glucoside, a polyphenol, chlorogenic acid, a tyrosine and a uridine. The inhibitory activities of luteolin and its related derivatives against MAOs activities are dependent on their molecular structures. The presence of the phenolic hydroxy group at para-position is the active site for MAO-A inhibition as well as of MAO-B. The methoxy group has no potential on MAO-A inhibition. An additional phenolic hydroxy group at the ortho-position alleviates about 4-fold MAO-A inhibitory activity of phenolic hydroxy group at para-position. A carboxylic group seems to be critical for DBH inhibition and has no effects on MAO.

SK-Hep1 인체 간암 세포에서 Luteolin에 의한 TRAIL 저항성 감소 효과 (Sensitization of TRAIL-resistant SK-Hep1 Human Hepatocellular Carcinoma Cells by Luteolin)

  • 김은영;김안근
    • 약학회지
    • /
    • 제56권1호
    • /
    • pp.35-41
    • /
    • 2012
  • In this study, we examined the effect of luteolin to enhance TRAIL-induced anticancer effect in SK-Hep1 cells. We found that combined use of TRAIL with luteolin markedly enhanced the cytotoxicity compared to either agent alone by inducing apoptosis. Furthermore, combined treatment of TRAIL with luteolin significantly induced activation of death receptor pathway-related proteins as well as PARP-cleavage and activation of effector caspases. Also, our result indicated that upregulation of DR4 and DR5 by luteolin combination may contribute to enhanced susceptibility of SK-Hep1 cells to TRAIL.

반지련으로 부터 분리한 luteolin의 세포고사효과 (Apoptotic Effect of Luteolin Isolated from Scutellaria barbata)

  • 이은옥;김진형;안규석;박영두;김성훈
    • 동의생리병리학회지
    • /
    • 제19권4호
    • /
    • pp.955-959
    • /
    • 2005
  • We previously demonstrated that the methylene chloride fraction of Scutellaria barbata suppessed human leukemic U937 cell proliferation by inducing apoptosis. In the present study, we have isolated luteolin from Scutellaria barbata and evaluated its apoptotic mechanism in Lewis lung carcinoma cells. Luteolin inhibited the proliferation of Lewis lung carcinoma cells in a concentration-dependent manner. Luteolin effectively increased the portion of $sub-G_1$ DNA content (apoptotic portion) and apoptotic Annexin-V positive cells in a concentration-dependent manner by FACS analysis. Caspase 9 and caspase 3 were activated and PARP was effectively cleaved by luteolin. It also increased the ratio of Bax to Bcl-2 through the decrease of Bcl-2 expression by Western blotting and reduced mitochondrial membrane potential following TMRE staining. These results suggest that luteolin can induce apoptosis through the mitochondrial mediated pathway.

Luteolin Inhibits Extracellular Signal-Regulated Kinase Pathway Through Protease-Activated Receptors (-2 and -4) and Their Agonist Activity

  • Lee, Sun-Hee;Sohn, Yong-Sun;Choi, Yeon-A;Lee, Ji-Eun;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • 제13권2호
    • /
    • pp.169-173
    • /
    • 2007
  • Luteolin is a major flavonoid of Lonicera japonica and has anti-inflammatory effect. The activation of proteinase-activated receptor (PAR)-2 and -4 by trypsin appears to play a role in inflammation, In the present study, we examined the inhibitory effects of luteolin on activation of trypsin-induced human leukemic mast cells (HMC-1). HMC-1 cells were stimulated with trypsin, PAR-2 and PAR-4 agonist, in the presence or absence of luteolin. The level of TNF-${\alpha}$ secretion was measured by enzyme-linked immunosorbent assay (ELISA). The expression of tryptase and phosphorylated-extracellular signal-regulated kinase (ERK) were assessed by Westem blot analysis. Moreover, trypsin activity was measured by the substrate Bz-DL-Arg-p-nitroanilide (BAPNA). TNF-${\alpha}$ secretion and Tryptase expression in trypsin-stimulated HMC-1 cells were markedly inhibited by pretreatment of luteolin. Furthermore, the pretreatment of luteolin resulted in the reduction of ERK phosphorylation and trypsin activity. These results suggest that luteolin might has the inhibitory effects on the PAR-2 and -4-dependent inflammation.