• Title/Summary/Keyword: Lunar Resources

Search Result 26, Processing Time 0.024 seconds

A Research Trend on Lunar Resources and Lunar Base (달 자원 탐사와 달 기지 연구 동향)

  • Kim, Kyeong Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.373-384
    • /
    • 2017
  • A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

Investigation of Reflectance Distribution and Trend for the Double Ray Located in the Northwest of Tycho Crater

  • Yi, Eung Seok;Kim, Kyeong Ja;Choi, Yi Re;Kim, Yong Ha;Lee, Sung Soon;Lee, Seung Ryeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.161-166
    • /
    • 2015
  • Analysis of lunar samples returned by the US Apollo missions revealed that the lunar highlands consist of anorthosite, plagioclase, pyroxene, and olivine; also, the lunar maria are composed of materials such as basalt and ilmenite. More recently, the remote sensing approach has enabled reduction of the time required to investigate the entire lunar surface, compared to the approach of returning samples. Moreover, remote sensing has also made it possible to determine the existence of specific minerals and to examine wide areas. In this paper, an investigation was performed on the reflectance distribution and its trend. The results were applied to the example of the double ray stretched in parallel lines from the Tycho crater to the third-quadrant of Mare Nubium. Basic research and background information for the investigation of lunar surface characteristics is also presented. For this research, resources aboard the SELenological and ENgineering Explorer (SELENE), a Japanese lunar probe, were used. These included the Multiband Imager (MI) in the Lunar Imager/Spectrometer (LISM). The data of these instruments were edited through the toolkit, an image editing and analysis tool, Exelis Visual Information Solution (ENVI).

Introduction to Lunar Oxygen Distribution and Its Extraction Technology (달 표면 산소 분포 및 산소 추출 기술 소개)

  • Kim, Kyeong Ja
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • NASA has a plan for the Artemis manned lunar mission in 2020. In 2030s, not only America but also other countries are considering to prepare for human to stay on the Moon at least for a month and necessary technology is currently being developed. With this plan, the mostly considered thing is lunar in-situ resource utilization. The most essential resources could be water and oxygen for sustain human life on the Moon. These resources are not supposed to be brought from the Earth, and it is economically sensible if they are obtained from the lunar surface. Because oxygen can be used as both oxidizer and propellent when a rocket departs from a lunar base directly to Mars, technology for extraction method of oxygen resource and its utilization has been being developed worldwide. This paper introduces oxygen distribution on the Moon and major oxygen extraction methods.

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Review of the Sintering Technologies Using In-situ Resources for Lunar Construction and Future Works (달 기지 건설을 위한 현지재료 활용 소결 기술 및 향후 과제)

  • Ryu, Geun U;Kim, Young-Jae;Shin, Hyu-Soung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.839-856
    • /
    • 2022
  • Over the last decade, the competition for space development has accelerated. The world's largest space agencies are aiming toward long-term lunar exploration and manned missions. For sustainable and safe lunar exploration, construction of infrastructures that include various habitats is essential. However, transporting construction materials from Earth for lunar base construction is extremely expensive. Thus, technologies for manufacturing construction materials using in-situ resources from the moon should be advanced. The sintering techniques have been actively studied using lunar soil. In this review, five sintering technologies, including radiation, solar, spark plasma, laser, and microwave sintering, for manufacturing construction materials using lunar soil are introduced, and future research is discussed.

Basic Lunar Topography and Geology for Space Scientists (우주과학자에게 필요한 달의 지형과 지질)

  • Kim, Yong Ha;Choi, Sung Hi;Yu, Yongjae;Kim, Kyeong Ja
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.217-240
    • /
    • 2021
  • Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.