DOI QR코드

DOI QR Code

Introduction to Lunar Oxygen Distribution and Its Extraction Technology

달 표면 산소 분포 및 산소 추출 기술 소개

  • Kim, Kyeong Ja (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 김경자 (한국지질자원연구원 국토지질연구본부)
  • Received : 2021.01.01
  • Accepted : 2021.03.23
  • Published : 2021.03.31

Abstract

NASA has a plan for the Artemis manned lunar mission in 2020. In 2030s, not only America but also other countries are considering to prepare for human to stay on the Moon at least for a month and necessary technology is currently being developed. With this plan, the mostly considered thing is lunar in-situ resource utilization. The most essential resources could be water and oxygen for sustain human life on the Moon. These resources are not supposed to be brought from the Earth, and it is economically sensible if they are obtained from the lunar surface. Because oxygen can be used as both oxidizer and propellent when a rocket departs from a lunar base directly to Mars, technology for extraction method of oxygen resource and its utilization has been being developed worldwide. This paper introduces oxygen distribution on the Moon and major oxygen extraction methods.

2024년 미국항공우주국은 아르테미스 유인 달 탐사를 계획하고 있으며, 2030년대에는 미국을 비롯해 주요 국가들은 인류가 1개월 이상의 장기적인 유인 활동을 추진하기 위한 관련 핵심기술을 개발하고 있는 실정이다. 이러한 계획과 더불어 가장 우선시하여 고려되는 것은 달 현지자원 활용이며, 반드시 필요한 자원은 생명유지를 위한 물과 산소자원이라고 할 수 있다. 이러한 자원은 지구에서 가져가는 것이 아니라 달 표면 현지에서 확보해 활용하는 것이 가장 경제적이며, 달 기지 건설 및 향후 화성으로 진출하기 위한 추진체의 연료로 활용할 수 있는 점에서도 산소자원의 채굴 및 활용방안에 대한 국제적인 연구개발은 활발히 진행되고 있다, 본 논문은 달 표면에서의 산소의 분포 및 산소 추출에 대한 대표적인 방법을 소개하고자 한다.

Keywords

References

  1. Allen, C.C., Morries, R.V., McKay D.S., 1996, Oxygen extraction from lunar soils and pyroclastic glass. J. Geophysics Research 101 (E11), 26085-26095. https://doi.org/10.1029/96JE02726
  2. Aiken, R.H., 1906, Process of Making Iron from the Ore, US816142
  3. Bale, C.W., Belisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.-H., Kang, Y.-B., Melancon, J., Pelton, A.D., Petersen, S., Robelin, C., Sangster, J., Spencer, P., van Ende, M.-A., 2016, FactSage thermochemical software and databases, 2010-2016. Calphad 54, 35-53 https://doi.org/10.1016/j.calphad.2016.05.002
  4. Becker, R.H., 1977, Does application of the ROSIWAL principle to lunar soils require that concentrations of soilar-wind-implanted species be grain-size independent? Eearth and Planetary Science Letters 34, 136-140. https://doi.org/10.1016/0012-821X(77)90114-5
  5. Benna, M, Hurley, D.M., Stubbs, T.J., Mahaffy, P.R., Elphic, R.C. 20 et al., 2019, Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts. Nature Geoscience 12, 333-338. https://doi.org/10.1038/s41561-019-0345-3
  6. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermal. B., 2010, Detection of Water in the LCROSS Ejecta Plume, Science 330, 463-468. https://doi.org/10.1126/science.1186986
  7. Curreri, P.A., Ethridge, E.C., Hudson, S.B, Miller, T.Y., Grugel. R.N., Sen, S., Sadoway, D.R., 2006, Process Demonstration For Lunar In Situ Resource UtilizationMolten Oxide Electrolysis, NASA/TM-2006-214600.
  8. Gladston, G.R, Hurley, D., Retherford, K.D. Feldman, P.D., Pryor, Chaufray, J-Y., Versteeg, M., W.R., Greathouse, T.K., Steffl, A.J., Throop, H., Parker, J.W., Kaufmann. D.E., Egan, A.F., Davis, M.W., Slater, D.C., Mukherjee, J.M., Miles, P.F., Hendrix, A.R., Colaprete, A., Stern, A., 2010, LRO-LAMP Observations of the LCROSS Impact Plume, Science, 330, 472-476. https://doi.org/10.1126/science.1186474
  9. Johnson, J.R., Swindle, T.D., Lucey, P.G., 1999, Estimated Solar Wind-Implanted Helium-3 Distribution on the Moon. Geophysical Research Letters, 26(3) 385-388. https://doi.org/10.1029/1998GL900305
  10. Paige, D.A., Siegler, M.A., JZhang, J.A., Hayne, P.O., EFoote, E.J., KBennett, K.A., Vasavada, A.R., Benjamin T., DeJong, E., Bills, B.G., W., Murray, B.C., Allen, C.C., Snook, K., Soderblom, L.A., Calcutt, S., Taylor, F.W., Bowles, N.E., Bandfield, J.L., Elphic, R., Ghent, R., Glotch, T.D., Wyatt, M.B., Lucey, P.G., 2010, Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region, Science, 330, 479-482. https://doi.org/10.1126/science.1187726
  11. ESA 2020 http://lunarnetworks.blogspot.com/2012/08/characterisation-of-potential-landing.html
  12. ISECG 2020 Global Expdrolation Roadmap, ISECG 2020 Report
  13. Kesterke, D.G., 1970, Electrowinning of Oxygen from Silicate Rocks. Report of Investigtions 7587. U.S. Dept. of Interioer Bureau of Mines, Reno, Navada. 12 pp.
  14. Lomax B.A. et al., 2020, "Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith. "Planetary and Space Science, 180. 104748. https://doi.org/10.1016/j.pss.2019.104748
  15. Meyer, C., 2011, Lunar Sample Compendium. https://www.lpi.usra.edu/lunar/samples/
  16. Needham D.H. and Kring D.A., 2017, Lunar volcanism produced a transient atmosphere around the ancient Moon, Earth and Planetary Science Letters, 478, 175-178. https://doi.org/10.1016/j.epsl.2017.09.002
  17. Schaible and Baragiola, 2014, Hydrogen implantation in sillicates: The role of solar wind in SiOH bond formation on the surface of airless boides in space. J. Geophysical Research: Planet. 10.1002/2014JE004650
  18. Schluter, L. and Cowley, A., 2020, Review of Techniques for In-Situ Oxygen Extraction on the Moon, Planetary and Space Science. 181, 104753. https://doi.org/10.1016/j.pss.2019.104753
  19. Schreiner S.S. et al., 2017, "Integrated modeling and optimizaition of lunar in-situ resource utilization systems." https://sciences.ucf.edu/class/wp-content/uploads/sites/58/2017/01/
  20. Schreiner, S.S., Hoffman, J.A., Sanders, G.B., Lee, K.A., 2015, Intergrated Modeling and Optimization of Lunar In-Situ Utilization Systems. 978-1-4799-5380-6/15@IEEE.
  21. Shomate, C. H., Naylor B. F., Boericke, F. S., 1946, Thermodynamic Properties of Ilmenite and Selective Reduction of Iron in Ilmenite, U. S. Bureau of Mines.
  22. Spudis 2020. Spudis Lunar Resources. https://spudislunarresources.com/Images_Maps/soil.jpg
  23. Turkevich, A., 1973, The Chemical Composition of he Lunar Surface, Accounts of Chemical Research, 6(3), 81. https://spudislunarresources.com/Images_Maps/soil.jpg https://doi.org/10.1021/ar50063a001