Browse > Article
http://dx.doi.org/10.7780/kjrs.2017.33.3.6

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data  

Sun, Changwan (Department of Geophysical Exploration, University of Science and Technology)
Takao, Kobayashi (Korea Institute of Geoscience and Mineral Resources)
Kim, Kyeong Ja (Department of Geophysical Exploration, University of Science and Technology)
Choi, Young-Jun (Department of Astronomy and Space Science, University of Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.33, no.3, 2017 , pp. 313-324 More about this Journal
Abstract
A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.
Keywords
Lunar lava tube; Rille; Kaguya; LRS; Surface range; DTM;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ono, T., A. Kumamoto, Y. Kasahara, Y. Yamaguchi, A. Yamaji, T. Kobayashi, S. Oshigami, H. Nakagawa, Y. Goto, K. Hashimoto, Y. Omura, T. Imachi, H. Matsumoto, and H. Oya, 2010. The lunar radar sounder (LRS) onboard the Kaguya (SELENE) spacecraft, Space Science Review, 154(1): 145-192.   DOI
2 Oshigami, S., Y. Yamaguchi, A. Yamaji, T. Ono, A. Kumamoto, T. Kobayashi, and H. Nakagawa, 2009. Distribution of the subsurface reflectors of the western nearside maria observed from Kaguya with Lunar Radar Sounder, Geophysical Research Letters, 36(18): L18202.   DOI
3 Pommerol, A., W. Kofman, J. Audouard, C. Grima, C. Beck, J. Mouginot, A. Herique, A. Kumamoto, T. Kobayashi, and T. Ono, 2010. Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: influence of mineralogical composition, Geophysical Research Letters, 37(3): L03201.   DOI
4 Saran, S., A. Das, and D. Pandey, 2016. Physical properties of lunar volcanic terrains using LRO data, 47th Lunar and planetary science conference, The Woodlands, Texas, Mar., 21-25, Abstract 2249.
5 SELENE DATA ARCHIVE (http://l2db.selene.darts.isas.jaxa.jp/).
6 Taflove, A., and S. C. Hagness, 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, Artech House, Boston, U. S. A.
7 Wagner, R. V. and M. S. Robinson, 2014. Distribution, formation mechanisms, and significance of lunar pits, Icarus, 237: 52-60.   DOI
8 Yee, K. S., 1966. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media, IEEE Transactions Antennas and Propagation, 14(8): 302-307.   DOI
9 Lee, S. R., S. K. Kwon, K. J. Kim, S. C. Shin, S. G. Lee, and Kobayashi, T., 2011. Development of New Geological Technology for tracing Earth and Planetary Evolution, Korea Institute of Geoscience and Mineral Resources (KIGAM), GP2009-010-2011(3), p. 170.
10 Arya, A. S., R. P. Rajasekhar, G. T. Ajai, and A. S. Kumar Kiran, 2011. Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data, Current Science, 100(4): 524-529.
11 Chappaz L., R. Sood, H. J. Melosh, K. C. Howell, D. M. Blair, C. Milbury, and M. T. Zuber, 2017. Evidence of large empty lava tubes on the Moon using GRAIL gravity, Geophysical Research Letters, 44: 105-112.   DOI
12 Coombs, C. R., and B. R. Hawke, 1992. A search for intact lava tubes on the moon: possible lunar habitats, 2nd Conference on lunar base and space activities of the 21st century, vol. 1, pp. 219-229.
13 Greeley, R. and P. D. Spudis, 1986. Hadley Rille, lava tubes and mare volcanism at the Apollo 15 site, Workshop on the Geology and Petrology of the Apollo 15 Landing Site, Houston, Texas, Nov. 13-15, pp. 58-61.
14 Haruyama, J., K. Hioki, M. Shirao, T. Morota, H. Hiesinger, Carolyn H. van der Bogert, H. Miyamoto, A. Iwasaki, Y. Yokota, M. Ohtake, T. Matsunaga, S. Hara, S. Nakanotani, and C. M. Pieters, 2009. Possible lunar lava tube skylight observed by SELENE cameras, Geophysical Research Letters, 36: L21206.   DOI
15 Hong, I. S., Y. Yi, and E. J. Kim, 2014. Lunar pit crates presumed to be the Entrances of lava caves by analogy to the earth lava tube pits, Journal of Astronomy and Space Sciences, 31(2): 131-140.   DOI
16 Hong, I. S., Y. Yi, J. H. Yu, and J. Haruyama, 2015. 3D modeling of Lacus Mortis pit crater with presumed interior tube structure, Journal of Astronomy and Space sciences, 32(2): 113-120.   DOI
17 Jung, J. I., I. S. Hong, E. J. Cho, and Y. Yi, 2016. Method for indentifying lava tubes among pit craters using brightness profile across pits on the Moon or Mars, Journal of Astronomy and Space Sciences, 33(1), 21-28.   DOI
18 Kato, M., S. Sasaki, Y. Takizawa, and the Kaguya project team, 2010. The Kaguya Mission Overview, 154(1): 3-19.
19 Horz, F., 1985. Lava tubes: Potential shelters for habitats, Lunar bases and space activities of the 21st century, Houston, TX, Lunar and Planetary Institute, pp. 405-412.
20 Hurwitz, Debra M., James W. Head, and H. Hiesinger, 2013. Lunar sinuous rilles: Distribution, characteristics, and implications, Planetary and Space Science, 79-80: 1-38.   DOI
21 Kobayashi, T., H. Oya, and T. Ono, 2002. A-scope analysis of subsurface radar sounding of lunar mare region, Earth Planets Space, 54(10): 973-982.   DOI
22 Kobayashi, T., S. R. Lee, J. H. Kim, and T. Ono, 2011. HF SAR image cross-correlation technique for high accuracy orbit positioning, Science China, 54(5): 978-985.
23 Kobayashi T., J. H. Kim, S. R. Lee, A. Kumamoto, H. Nakagawa, S. Oshigami, H. Oya, Y. Yamaguchi, A. Yamaji, and T. Ono, 2012. Synthetic Aperture Radar Processing of Kaguya Lunar Radar Sounder Data for Lunar Subsurface Imaging, IEEE transactions on geoscience and remote sensing, 50(6): 2161-2174.   DOI
24 Murase, T. and A. R. McBirney, 1970. Viscosity of lunar lavas, Science, 167(3924): 1491-1493.   DOI
25 Ono, T. and H. Oya, 2000. Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planets Space, 52(9): 629-637.   DOI
26 Ono T., Kumamoto, A., Nagakawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., Kobayashi, T., Kasahara, Y., and Oya, H., 2009. Lunar Radar Sounder Observations of subsurface layers under the nearside maria on the Moon, Science, 323(5916): 909-912.   DOI