DOI QR코드

DOI QR Code

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction

달 기지 건설을 대비한 국내외 달 탐사 동향 분석

  • Hong, Sungchul (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Hyu-Soung (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology)
  • 홍성철 (한국건설기술연구원 미래융합연구본부) ;
  • 신휴성 (한국건설기술연구원 미래융합연구본부)
  • Received : 2018.04.18
  • Accepted : 2018.07.06
  • Published : 2018.07.31

Abstract

Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

미국과 구소련을 중심으로 진행되었던 달 탐사는 1970년대에 중단되었다. 하지만 1990년대 달에 얼음 형태의 물과 희귀자원이 대량 발견되면서 유럽연합, 중국, 일본, 인도 등으로 대표되는 우주신흥강국 들도 달 자원 확보와 기지 건설을 목적으로 달 탐사 경쟁에 합류하고 있다. 향후 달 탐사 사업은 국제 협력을 기반으로 전 세계 주요 우주국과 우주 민간 기업이 함께 참여할 것으로 전망된다. 또한 달 궤도선 중심의 탐사에서 벗어나 달 착륙선 및 로버 중심의 무인 탐사가 전개되어 자원 탐사, 토양 표본 채취 및 귀환 등의 임무를 수행할 것으로 예상된다. 달 탐사를 통해 발견된 자원은 향후 유인 달 기지 건설과 밀접한 연관성이 있다. 달 표면에서의 건설을 위해서는 막대한 양의 자원을 지구로부터 수송해야하므로, 달 현지 자원을 이용하여 물, 산소를 생산하고 현지 지형을 이용하여 기지를 건설하는 기술이 필요하다. 따라서 본 논문에서는 현재 진행 중인 전 세계 달 탐사 동향 및 전망과 함께, 달 표면에서의 유인 달 기지 건설 방안과 국가별 달 건설 기술 개발 현황에 대해 조사 및 비교 분석하였다.

Keywords

References

  1. G. Ju "Development Status of Domestic & Overseas Space Exploration & Associated Technology," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 44, no. 8, pp. 741-757, 2016. DOI: https://doi.org/10.5139/JKSAS.2016.44.8.741
  2. E. Sim "Current Development Trends in Lunar Explorers Around the World," Aeronautical and Space Sciences, vol. 44, no. 8, pp. 741-757, 2016
  3. K. J. Kim "A Research Trend on Lunar Resource and Lunar Base", The Journal of The Petrological Society of Korea, vol. 26, no. 4, pp. 373-384, 2017. DOI: http://dx.doi.org/10.7854/JPSK.2017.26.4.373
  4. ISECG "The Global Exploration Roadmap," Available from https://www.nasa.gov/sites/default/files/files/GER2013_Small.pdf assessed February, 6, 2018.
  5. LEAG "The Lunar Exploration Roadmap: Exploring the Moon 21 st Century: Themes, Goals, Objectives, Investigations, and Priorities, 2016," Available from https://www.lpi.usra.edu/leag/LER-2016.pdf accessed January, 15, 2018.
  6. H. Seo, E. Kim, J. H. Kim, J. H. Lee, G. Choi, E. Shim "Case Study for Lunar Landing Site Selection", Aeronautical and Space Sciences, vol. 10, no. 2, pp. 93-101, 2012.
  7. NASA "NASA Radar Finds Ice Deposits at Moon's North Pole" Available from https://www. nasa.gov /mission_pages/Mini-RF/multimedia/feature_ice_like_dep osits.html.accessed June, 20. 2017.
  8. D. G. Shrunk, B. L. Sharpe, B. L. Cooper, M. Thangavelu, "The Moon, Resources, Future Development and Settlement, 2nd Edition, Praxis Publishing, Chichester, UK, 2008.
  9. E. N. Slyuta, A. M. Abdrakhimov, E. M. Galimov, V. I. Venadsky, "The Estimation of Helium-3 Probable Reserves in Lunar Regolith," 38th Lunar and Planetary Science Conference, Abstract no. 2175, 2007.
  10. H. J. Cho, "Space Development and Law in Asia," The Justice, vol. 158, no. 3, pp. 476-503, 2017. DOI: http://dx.doi.org/G704-001304.2017.158.3.001
  11. NASA "Entering human presence into the solar system" Available from https://www.nasa.gov/ exploration/multimedia/ jfa18833.html accessed December, 10. 2017.
  12. Ministry of Science and ICT, "3rd Basic Space Development Plan, 2018.
  13. KARI "Korean Lunar Exploration Program" Available from https://www.kari.re.kr/kor/sub03_ 04 _01.do accessed February, 02. 2018.
  14. A. Colapreta, R. Elphic, D. Andrews, J. Trimble, B. Bluethmann, J. Quinn, G. Chavers, " Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles," Proc. of LEAG Workshop, Abstract #5025, November, 2016.
  15. ISECG MCD Meeting, "International Lunar Robotic Exploration Mission Timeline," Tele-conference, November, 2017.
  16. J. Carpenter, "Lunar Missions in ESA's Reference Exploration Roadmap," Proc. of Lunar Science for Landed Missions Workshop, SSERVI ID: LLW2018-71 January 2018.
  17. J. Haruyama, "Lunar Landing Site Candidates Discussed In The Japan's Science Community," Lunar Science for Landed Missions Workshop, SSERVI ID: LLW2018-51, January 2018.
  18. Q. Wang, L. Xiao, "China's Lunar Exploration Programme," Proc. of LEAG Workshop, Abstract no. 2041, November, 2016.
  19. E. Lakdawalla, "Chang'e 3 data: Lander Terrain Camera(TCAM)", Available from http://planetary .s3.amazonaws.com/data/change3/tcam.html accessed May, 3, 2018.
  20. R. Sridharan, S. M. Ahmed, T. P. Das, P. Sreekatga, P. Pradeepkumar, N. Naik, G. Supriya, "Direct'evidence for water ($H_2O$) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I," Planetary and Space Science, vol. 58, pp. 947-950, 2010. DOI: https://doi.org/10.1016/j.pss.2010.02.013
  21. NASA, "Commercial Space Transportation", Available from https://www.nasa.gov/commercial-orbital- transportation -services-cots accessed December, 2. 2017.
  22. SpaceX, "Space Launch Vehicle and Spacecraft in SpaceX" Available from http://www.spacex.com /galleries accessed May, 4. 2018.
  23. NASA, "Lunar CATALYST," Available from https://www.nasa.gov/ lunarcatalyst accessed January, 12. 2018.
  24. NASA, "Six Teams Earn Honors, Prize Money in Second Construction Level of NASA Challenge to 3-D Print a Habitat," Available from https://www .nasa.gov/directorates/spacetech/centennial_challenges/3D PHab/6-teams-earn-prize-money-in-second-level-of-challenge accessed July, 10. 2017.
  25. G. Ju, "Korean Pathfinder Lunar Orbiter(KPLO) Status Update," Available from https://wwwhou.usra. edu/meetings/leag2017/presentations/tuesday/ju.pdf accessed April, 30. 2018.
  26. G. B. Sanders, W. E. Larson, "Integration of in-situ resource utilization into lunar/Mars exploration through field analogs," Advances in Space Research, vol. 47, pp. 20-29, 2011. DOI: https://doi.org/10.1016/j.asr.2010.08.020
  27. M. Anand, I. A. Crawford, M. Balat-Pichelin, S. Abanades. W. Y. Westrenen, G. Peraudea, R. Jaumann, and W. Seboldt, "A brief review of chemical and mineralogical resources on the Moon and likely initial In Situ Resource Utilization (ISRU) applications," Planetary and Space Science, vol. 74, pp. 42-48, 2012. DOI: https://doi.org/10.1016/j.pss.2012.08.012
  28. USGS, "U.S.G.S. Planetary GIS Web Server", Available from https://webgis.wr.usgs.gov/index.html accessed April, 30. 2018.
  29. NASA, "Lunar Pits Could Shelter Astronauts, Reveal Details of How 'Man in the Moon' Formed" Available from https://www.nasa.gov/content/goddard/lunar-pitscould-shelter-astronauts-reveal-details-of-how-man-in-the-moon-formed accessed May, 4. 2018.
  30. B. Ryu, C. Wang, I. Chang, "Development and Geotechnical Enginering Properties of KLS-1 Lunar Simulant", Journal of Aerospace Engineering, vol 31, no. 1, pp. 04017083, 2018. DOI: https://doi.org/10.1061/(ASCE)AS.1943-5525.0000798
  31. KICT, "Development of environmental simulator and advanced construction technologies over TRL6 in extreme conditions(II)", KICT Research Report, KICT 2017-169, 2017.
  32. S. Wilhelm, M. Curbach "Review of possible mineral materials and production techniques for a building material on the moon. Structural Concrete", vol. 15, no. 3, pp. 419-428, 2014. DOI: https://doi.org/10.1002/suco.201300088
  33. J. Lee, T. Lee, K. Ahn, B. Chang "Workability of Polymeric Concrete for Lunar Infrastructure," Journal of the Korean Society of Civil Engineers, vol. 37, no. 2, pp. 507-512, 2017. DOI: https://doi.org/10.12652/Ksce.2017.37.2.0507