• Title/Summary/Keyword: Lunar Resource

Search Result 18, Processing Time 0.022 seconds

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

Experimental Evaluation of Ice-regolith Mixture Settlement Caused by Lunar Ice Extraction (달 얼음-월면토 결합 형태에 따른 얼음 추출로 발생하는 침하량 평가)

  • Lee, Jangguen;Gong, Zheng;Jin, Hyunwoo;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.13-19
    • /
    • 2023
  • Lunar ice is a resource available for future human exploration in deep space and long-term extraterrestrial habitat. However, the origin and nature of lunar ice remains unclear. In addition to remote sensing, international space agencies are competitively planning and conducting missions for lunar surface exploration to determine the existence and resource extent of lunar ice. If a sufficient amount of lunar ice is confirmed, its future in-situ resource utilization is expected to be greatly beneficial. However, due to ice extraction, settlement may occur, which should be taken into account from a geotechnical engineering perspective. Herein, experimental investigations of the potential settlement caused by lunar ice extraction were conducted and different textures of lunar ice were simulated. Consequently, it was confirmed that significant settlement occurs even at the initial water content of ~10% in lunar regolith simulant-ice-mixed soil.

A Research Trend on Lunar Resources and Lunar Base (달 자원 탐사와 달 기지 연구 동향)

  • Kim, Kyeong Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.373-384
    • /
    • 2017
  • A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

Research on Development of Construction Spatial Information Technology, using Rover's Camera System (로버 카메라 시스템을 이용한 건설공간정보화 기술의 개발 방안 연구)

  • Hong, Sungchul;Chung, Taeil;Park, Jaemin;Shin, Hyu-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.630-637
    • /
    • 2019
  • The scientific, economical and industrial values of the Moon have been increased, as massive ice-water and rare resource were founded from the lunar exploration missions. Korea and other major space agencies in the world are competitively developing the ISRU (In Situ Resource Utilization) technology to secure future lunar resource as well as to construct the lunar base. To prepare for the lunar construction, it is essential to develop the rover based construction spatial information technology to provide a decision-making aided information during the lunar construction process. Thus, this research presented the construction spatial information technology based upon rover's camera system. Specifically, the conceptual design of rover based camera system was designed for acquisition of a rover's navigation image, and lunar terrain and construction images around the rover. The reference architecture of the rover operation system was designed for computation of the lunar construction spatial information. Also, rover's localization and terrain reconstruction methods were introduced considering the characteristics of lunar surface environments. It is necessary to test and validate the conceptual design of the construction spatial information technology. Thus, in the future study, the developed rover and rover operation system will be applied to the lunar terrestrial analogue site for further improvements.

A study of utilization pattern on emergency patients in Gwangju Emergency Medical Information Center during the Lunar New Year and Chuseok holidays (명절 연휴기간 내 광주응급의료정보센터 이용현황 분석 - 설과 추석을 중심으로 -)

  • Kim, Mi-Seon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.13 no.1
    • /
    • pp.61-72
    • /
    • 2009
  • Purpose : This study was conducted to understand the unforeseen phone calls placed through the 1339 emergency medical communication system by residents of the Gwangju/Jeonnam area during the Lunar New Year and Chuseok holidays. Methods : A descriptive research method was implemented using SPSS to analyze 9,047 reported and received consultation phone calls made during the 2008 Lunar New Year holiday (February 6-10) and the 2008 Chuseok holiday (September 13-15) for frequency and percentages. Results : Among the general characteristics of subjects during the Lunar New Year and Chuseok holidays, an examination of the distribution for gender showed more men than women and the distribution for age showed most subjects were thirties, followed by forties, and finally under ten years of age. According to the status of situational calls during the Lunar New Year holiday most were used for in the following order : providing resource information, misdialing and prank calls, and additional consultations. According to the status of situational calls during the Chuseok holiday most were used for in the following order : providing resource information, additional consultations, misdialing and prank calls. According to region most came from Gwangju Metropolitan City Bukgu, followed by Yeosu, Suncheon, and Mokpo in Jeonnam. According to callers, the majority were non-medical persons. According to time most were made between 9:01 and 12:00, while the fewest were made during 3:01 and 6:00. According to treatment department most were made in the following order : internal medicine, pharmacy, and pediatrics. Most medical resource information provided regarded areas outside the callers location. Conclusion : Emergency medical technician will play a central role in the emergency medical information system in the near future.

  • PDF

Introduction to Lunar Oxygen Distribution and Its Extraction Technology (달 표면 산소 분포 및 산소 추출 기술 소개)

  • Kim, Kyeong Ja
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • NASA has a plan for the Artemis manned lunar mission in 2020. In 2030s, not only America but also other countries are considering to prepare for human to stay on the Moon at least for a month and necessary technology is currently being developed. With this plan, the mostly considered thing is lunar in-situ resource utilization. The most essential resources could be water and oxygen for sustain human life on the Moon. These resources are not supposed to be brought from the Earth, and it is economically sensible if they are obtained from the lunar surface. Because oxygen can be used as both oxidizer and propellent when a rocket departs from a lunar base directly to Mars, technology for extraction method of oxygen resource and its utilization has been being developed worldwide. This paper introduces oxygen distribution on the Moon and major oxygen extraction methods.

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.

Investigation of Technical Requirements for a Protective Shield with Lunar Regolith for Human Habitat (월면토를 이용한 달 유인 우주기지 보호층의 기술적 요구조건에 관한 연구)

  • Lee, Jangguen ;Gong, Zheng;Jin, Hyunwoo ;Ryu, Byung Hyun;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.49-55
    • /
    • 2023
  • The discovery of lunar ice in the lunar polar region has fueled international interest in in situ resource utilization (ISRU) and the construction of lunar habitats. Unlike Earth's atmosphere, the Moon presents unique challenges, including frequent meteoroid impacts, direct exposure to space radiation, and extreme temperature variations. To safeguard lunar habitats from these threats, the construction of a protective shield is essential. Lunar regolith, as a construction material, offers distinct advantages, reducing transportation costs and ensuring a sustainable supply of raw materials. Moreover, it streamlines manufacturing, integration schedules, and enables easy repairs and modifications without Earth resupply. Adjusting the shield's thickness within the habitat's structural limits remains feasible as lunar conditions evolve. Although extensive research on protective shields using lunar regolith has been conducted, unresolved conflicts persist regarding shield requirements. This study conducts a comprehensive analysis of the primary lunar threats and suggests a minimum shield thickness of 2 m using lunar regolith. Furthermore, it outlines the necessary technology for the rapid construction of such protective shields.