• Title/Summary/Keyword: Lower temperature soldering

Search Result 12, Processing Time 0.025 seconds

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Estimate of package crack reliabilities on the various parameters using taguchi's method (다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가)

  • Kwon, Yong-Su;Park, Sang-Sun;Park, Jae-Wan;Chai, Young-Suck;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.

A study on the tensile strength of flow-soldered joint using low residue flux (저잔사 플럭스를 사용한 플로 솔더링부의 인장특성 연구)

  • 장인철;최명기;신영의;정재필;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.77-81
    • /
    • 1999
  • Through-hole PCB(Printed Circuit Board) was soldered by flow soldering process using cleaning or noncleaning fluxes. Preheating temperature and conveyor speed were changed in the range of 323∼413K and 0.3∼2m/min respectively. The soldered joints were tensile tested in order to evaluated bonding strength. As experimental results, relatively high tensile fracture load, 120∼140N, were obtained in case of preheating temperature of 383K, and conveyor speed was 0.6∼1.0 m/min. Fractured surfaces of higher tensile strength show some dimple area, while those of lower tensile fracture load show brittle fracture.

  • PDF

Properties of the 18K Red Gold Solder Alloys with Indium Contents (18K 레드 골드 정함량 솔더의 In 첨가에 따른 물성변화)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • The properties of 18 K red gold solder alloys were investigated by changing the content of In up to 10.0 wt% in order to replace the hazardous Cd element. Cupellation and energy dispersive X-ray spectroscopy (EDS) were used to check the composition of each alloy, and FE-SEM and UV-VIS-NIR-Colormeter were employed for microstructure and color characterization. The melting temperature, hardness, and wetting angle of the samples were determined by TGA-DTA, the Vickers hardness tester, and the Wetting angle tester. The cupellation result confirmed that all the samples had 18K above 75.0wt%-Au. EDS results showed that Cu and In elements were alloyed with the intended composition without segregation. The microstructure results showed that the amount of In increased, and the grain size became smaller. The color analysis revealed that the proposed solders up to 10.0 wt% In showed a color similar to the reference 18 K substrate like the 10.0 wt% Cd solder with a color difference of less than 7.50. TGA-DTA results confirmed that when more than 5.0 wt% of In was added, the melting temperature decreased enough for the soldering process. The Vickers hardness result revealed that more than 5.0 wt% In solder alloys had greater hardness than 10.0 wt% Cd solder, which suggested that it was more favorable in making a wire type solder. Moreover, all the In solders showed a lower wetting angle than the 10.0 wt% Cd solder. Our results suggested that the In alloyed 18 K red gold solders might replace the conventional 10.0 wt% Cd solder with appropriate properties for red gold jewelry soldering.

A Study on the Soldering Characteristics of Sn-Ag-Bi-In Ball in BGA (Sn-Ag-Bi-In계 BGA볼의 솔더링 특성 연구)

  • 문준권;김문일;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.505-509
    • /
    • 2002
  • Pb is considered to be eliminated from solder, due to its toxicity. However, melting temperatures of most Pb-free solders are known higher than that of Sn37Pb. Therefore, there is a difficulty to apply Pb-free solders to electronic industry. Since Sn3Ag8Bi5In has relatively lower melting range as $188~200^{\circ}C$, on this study. Wettability and soldering characteristics of Sn3Ag8Bi5In solder in BGA were investigated to solve for what kind of problem. Zero cross time, wetting time, and equilibrium force of Sn3Ag8Bi5In solder for Cu and plated Cu such as Sn, Ni, and Au/Ni-plated on Cu were estimated. Plated Sn on Cu showed best wettability for zero cross time, wetting time and equilibrium farce. Shear strength of the reflowed joint with Sn3Ag8Bi5In ball in BGA was investigated. Diameter of the ball was 0.5mm, UBM(under bump metallurgy) was $Au(0.5\mu\textrm{m})Ni(5\mu\textrm{m})/Cu(18\mu\textrm{m})$ and flux was RMA type. For the reflow soldering, the peak reflow temperature was changed in the range of $220~250^{\circ}C$, and conveyor speed was 0.6m/min.. The shear strength of Sn3Ag8Bi5In ball showed similar level as those of Sn37Pb. The soldered balls are aged at $110^{\circ}C$ for 36days and their shear strengths were evaluated. The shear strength of Sn3Ag8Bi5In ball was increased from 480gf to 580gf by aging for 5 days.

Influence of Ag Precoating of $Bi_{2212}$ Superconductor-In Base Solder Soldering ($Bi_{2212}$ 초전도체와 In 계열 solder의 soldering에서 Ag precoating의 영향)

  • Jang Ji-Hoon;Kim Sang-Hyun;Shin Seung-Yong;Lee Yong-Chul;Kim Chan-Joong;Hyun Ok-Bae;Park Hae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, In-base solder was applied to the interface between $Bi_2Sr_2Ca_1Cu_2O_x(Bi_{2212})$ superconductor and Cu-Ni shunt metal at the temperature lower than $150^{\circ}C$. Most of the cases, $Bi_{2212}$ superconductor was precoated with Ag by electroplating in order to improve the contact properties of the solder layer. When the superconductor was directly soldered on to the superconductor, the solder was easily separated without external force. The shear strength of the contact between superconductor and shunt metal increased from 69.2 kgf to 74.4 kgf and 80.1 kgf, as the current density of the Ag electroplating was changed from 63 mA to 96 mA and 126 mA, respectively. The contact strength also increased to 49.9 kgf and 69.2 kgf when thickness of the electroplated Ag layer increased to $5{\mu}m$ and $10{\mu}m$, reapectively.

Wetting Property and Reflectivity of Sn-3.5Ag Solder by Plating for LED Lead Frame (LED용 리드프레임 상의 Sn-3.5Ag 솔더 도금의 젖음성 및 반사율)

  • Kee, Se Ho;Xu, Zengfeng;Kim, Won Joong;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.563-568
    • /
    • 2012
  • The wetting property and reflectivity of Sn-3.5Ag solder which was dip coated on a LED lead frame were investigated. The wettability of molten solder on Cu substrate was evaluated by the wetting balance tester, and surface tension was calculated from maximum withdrawal force and withdrawal time. Temperature of the molten solder in a bath was varied in the range of $250-290^{\circ}C$. With increasing temperature, the surface tension decreased a little. The reflectivity of Sn-3.5Ag coated on a substrate became a little lower than the highest current LED lead frame reflectivity.

Ornamented Dagger Sheath from Gyerim-ro Tomb No.14, Gyeongju: On the Joining Process of Gold Granules (경주 계림로 14호분 장식보검 금립의 접합방법에 관한 고찰)

  • Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.4-13
    • /
    • 2015
  • In most gold objects crafted using the granulation technique that have been thus far discovered in the Korean Peninsula, granules were joined using a soldering alloy of gold and silver. However, it was recently revealed through SEM-EDS analysis performed on the ornamented dagger sheath from Gyerim-ro Tomb No.14 in Gyeongju that the gold granules were joined to the surface of this sheath using an entirely different technique. The gold granules on the Gyerim-ro dagger sheath are evenly sized and shaped, the surface has a dendritic texture. Dendritic textures are a characteristic feature of metal alloys, not observed in pure metals. As a matter of fact, the gold granules were made of a ternary alloy of 77wt% Au, 18wt% Ag and 4wt% Cu. Due to this component, the alloy has a melting point below 1000℃ (approximately 980℃), which is significantly lower than 1064℃, the melting temperature of pure gold. This makes it possible to join the gold granules directly to the surface of the sheath by briefly heating them to high temperature, without the use of soldering or any other media. When examined through SEM image, the surface of the sheath showed no traces of soldering, it suggests that the granules were joined through unaided fusion.

Recent Advances in Conductive Adhesives for Electronic Packaging Technology (전도성 접착제를 이용한 패키징 기술)

  • Kim, Jong-Woong;Lee, Young-Chul;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Conductive adhesives have recently received a lot of focus and attention from the researchers in electronics industry as a potential substitute to lead-containing solders. Numerous studies have shown that the conductive adhesives have many advantages over conventional soldering such as environmental friendliness, finer pitch feasibility and lower temperature processing. This review focuses on the recent research trends on the reliability and property evaluation of anisotropic and non-conductive films that interconnect the integrated circuit component to the printed circuit board or other types of substrate. Major topics covered are the conduction mechanism in adhesive interconnects; mechanical reliability; thermo-mechanical-hygroscopic reliability and electrical performance of the adhesive joints. This review article is aimed at providing a better understanding of adhesive interconnects, their principles, performance and feasible applications.

  • PDF

Properties of the White 5K Au-Ag-In Alloys with Indium Contents (백색 5K Au-Ag-In 합금재의 인듐 첨가량에 따른 물성 변화)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.381-385
    • /
    • 2017
  • In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> $70^{\circ}C$) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-AgIn alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.