• Title/Summary/Keyword: Lower development threshold

Search Result 99, Processing Time 0.033 seconds

Development of an Emergence Model for Overwintering Eggs of Metcalfa pruinosa (Hemiptera: Flatidae) (미국선녀벌레(Metcalfa pruinosa) (Hemiptera: Flatidae) 월동난 부화 예측 모델 개발)

  • Lee, Wonhoon;Park, Chang-Gyu;Seo, Bo Yoon;Lee, Sang-Ku
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The temperature-dependent development of Metcalfa pruinosa overwintering eggs was investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and $35{\pm}1^{\circ}C$, Relative Humidity 20~30%). All individuals collected before April 13, 2012 failed to develop into first instar larvae. In contrast, some individuals that were collected on April 11, 2013 successfully developed when reared under $20{\sim}32.5^{\circ}C$ temperature regimes. The developmental duration was shortest at $30^{\circ}C$ (13.3 days) and longest at $15^{\circ}C$ (49.6 days) in the fourth collected colony (April 26 2013). Developmental duration decreased with increasing temperature up to $30^{\circ}C$ and development was retarded at high-temperature regimes ($32.5^{\circ}C$). The lower developmental threshold was $10.1^{\circ}C$ and the thermal constant required to complete egg overwintering was 252DD. The Lactin 2 model provided the best statistical description of the relationship between temperature and the developmental rate of M. pruinosa overwintering eggs ($r^2=0.99$). The distribution of the developmental completion of overwintering eggs was well described by the 2-parameter Weibull function ($r^2=0.92$) based on the standardized development duration. However, the estimated cumulative 50% spring emergence dates of overwintering eggs were best predicted by poikilotherm rate model combined with the 2-parameter Weibull model (average difference of 1.7days between observed and estimated dates).

Temperature-dependent Development Model and Forecasting of Adult Emergence of Overwintered Small Brown Planthopper, Laodelphax striatellus Fallen, Population (애멸구 온도 발육 모델과 월동 개체군의 성충 발생 예측)

  • Park, Chang-Gyu;Park, Hong-Hyun;Kim, Kwang-Ho
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.343-352
    • /
    • 2011
  • The developmental period of Laodelphax striatellus Fallen, a vector of rice stripe virus (RSV), was investigated at ten constant temperatures from 12.5 to $35{\pm}1^{\circ}C$ at 30 to 40% RH, and a photoperiod of 14:10 (L:D) h. Eggs developed successfully at each temperature tested and their developmental time decreased as temperature increased. Egg development was fasted at $35^{\circ}C$(5.8 days), and slowest at $12.5^{\circ}C$ (44.5 days). Nymphs could not develop to the adult stage at 32.5 or $35^{\circ}C$. The mean total developmental time of nymphal stages at 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and $30^{\circ}C$ were 132.7, 55.9, 37.7, 26.9, 20.2, 15.8, 14.9 and 17.4 days, respectively. One linear model and four nonlinear models (Briere 1, Lactin 2, Logan 6 and Poikilotherm rate) were used to determine the response of developmental rate to temperature. The lower threshold temperatures of egg and total nymphal stage of L. striatellus were $10.2^{\circ}C$ and $10.7^{\circ}C$, respectively. The thermal constants (degree-days) for eggs and nymphs were 122.0 and 238.1DD, respectively. Among the four nonlinear models, the Poikilotherm rate model had the best fit for all developmental stages ($r^2$=0.98~0.99). The distribution of completion of each development stage was well described by the two-parameter Weibull function ($r^2$=0.84~0.94). The emergence rate of L. striatellus adults using DYMEX$^{(R)}$ was predicted under the assumption that the physiological age of over-wintered nymphs was 0.2 and that the Poikilotherm rate model was applied to describe temperature-dependent development. The result presented higher predictability than other conditions.

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae) (호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.158-166
    • /
    • 2008
  • The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.

The Correlation Between Sensory Processing Skills and Behavior Characteristics for Preschoolers (취학 전 아동의 감각처리능력에 따른 행동적 특성에 관한 연구)

  • Shin, Ji-Youn;Shin, Hea-Jeong;Cho, Hyun-Hee;Cha, Su-Min;Kim, Kyeong-Mi
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.3 no.1
    • /
    • pp.23-35
    • /
    • 2005
  • Objectives : The purpose of the study is to understand the sensory processing capacity and behavioral characteristics for preschoolers without disabilities, and to investigate the relationship between sensory processing skills and the behavioral characteristics. Methods : Mothers of preschoolers without disabilities between ages of 4 and 6 who attend Y kindergarten which is located in Busan, H kindergarten in Suwon, S kindergarten in Gimhae was participated. Mothers filled out the questionnaire at home from 4th to 14th of January in 2004. We used SSP(short sensory profile) which was used by Kim, Mi-Sun in 2001 to understand the sensory processing skills. We also used Behavior During Testing Checklist find their places in Miller Assessment for preschoolers to understand behavior characteristics. The results were analyzed with SPSS 10.0. Results : 1. Total incidents in sensory processing were 157 out of 190. Among sub items of the sensory processing, the mark of lower energy/weak was highest with 4.39 point and the mark of taste/smell sensitivity was lowest with 3.60 point. Total incidents in behavioral characteristics were 20 out of 24. Among the area of behavioral characteristics, the mark of sensory responses/threshold area was highest with 2.73 point and the mark of social interaction area was lowest with 2.29 point. 2. Children's total sensory processing capacity correlates with behavioral characteristics, the more sensory processing capacity, the more behavioral characteristics. Sensory processing point correlates with behavioral characteristics points except this item, reaction to separation from caretaker. Conclusions : We hope that the children who have behavioral characteristics with difficulties in sensory processing skills can be distinguished on the basis of this studying. Also, as we find and relieve early stage of the symptoms, following study which can present based to facilitate children's social development and improve the learning ability.

  • PDF

Change of Skin Temperature of Workers Using Vibrating Tools in Anthracite Mines (진동공구 사용근로자의 피부온도 변화)

  • Roh, Jae-Hoon;Moon, Young-Hahn;Shin, Dong-Chun;Cha, Bong-uk;Cho, Soo-Nam
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.357-364
    • /
    • 1988
  • By implementing epoch-making policies for industrial promotion, the national economy has made a remarkable development. As a result of such economic growth, industrial accidents and occupational diseases have become a serious problem in Korean society. In the presidential order for the execution of the Korean Labor Standard Law, neuritis and other diseases stemming from health impairments due to vibrations in industrial processes are designated to be dealt with as vibration diseases. In the case of vibration disease, industrial accident compensation is not effectively paid. In order to investigate the vibration hazards of rock-drill operation, the authors studied the subjective symptoms and performed physical function tests on a total of 79 persons (vibration exposed group) who used rock-drills, and 39 persons (control group) who did not use rock-drills at anthracite mines. The results of the physical function test were as follosws : 1. The right hand was more affected by white finger than the left hand. 2. Independent variables such as duration of rock-drill operation, age, drinking and smoking were indentified as statistically significant factors for the occurrence of white finger. 3. In the pain sense threshold, the group with Raynaud's phenomenon showed a statistically higher level than that of the control group. 4. The skin temperature of the group with Raynaud's phenomenon was lower than that of the control group. The recovery time of skin temperature aftr cooling was delayed compared with the value of the control group.

  • PDF

Relationship between Low Back Pain and Health-Related Quality of Life among Some Elderly (노인의 요통과 건강관련 삶의 질과의 관련성)

  • Oh, Kyeong-Ae;Park, Jong;Jeon, Dae-Jung;Han, Mi-Ah;Choi, Seong-Woo
    • Journal of agricultural medicine and community health
    • /
    • v.37 no.3
    • /
    • pp.156-166
    • /
    • 2012
  • Objectives: This study aimed to identify the relationship among health-related quality of life of the Cheon-nam region elderly with low back pain. Methods: Data were obtained from cross-sectional surveys conducted as a part of the Community Health Survey 2008. The final analysis included data from 7,003 of the 7,070 elderly participants (aged over 65 years), as 67 responses were excluded since they were inaccurate. Data were analyzed with SPSS for Windows (ver. 19.0), using a ${\chi}^2$-test, a t-test, an ANOVA, and multiple liner regression. The significance threshold was set as p<0.05. Results: Factors related to the health-related quality of life of the elderly were low back pain, age, education level, occupation, subjective health status, subjective stress, drinking status, number of chronic diseases, and sleep duration. Further, health-related quality of life was significantly lower in elderly adults with low back pain. Conclusions: In order to improve health-related quality of life of the elderly and the development of the program for the management of low back pain will be needed to determine, it is considered necessary to study more to follow through the various analysis of in the elderly and health-related quality of life.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Evaluation of SWIR bands utilization of Worldview-3 satellite imagery for mineral detection (광물탐지를 위한 Worldview-3 위성영상의 SWIR 밴드 활용성 평가)

  • Kim, Sungbo;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.203-209
    • /
    • 2021
  • With the recent development of satellite sensor technology, high-spatial-resolution imagery of various spectral wavelength bands have become possible. Worldview-3 satellite sensor provides panchromatic images with high-spatial-resolution and VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) bands with low-spatial-resolution, so it can be used in various fields such as defense, environment, and surveying. In this study, mineral detection was performed using Worldview-3 satellite imagery. In order to effectively utilize the VNIR and SWIR bands of the Worldview-3 satellite image, the sharpening technique was applied to the spatial resolution of the panchromatic image. To confirm the utility of SWIR bands for mineral detection, mineral detection using only VNIR bands was performed and comparatively evaluated. As the mineral detection technique, SAM (Spectral Angle Mapper), a representative similarity technique, was applied, and the pixels detected as minerals were selected by applying an empirical threshold to the analysis result. Quantitative evaluation was performed using reference data on the results of similarity analysis to evaluate the accuracy of mineral detection. As a result of the accuracy evaluation, the detection rate and false detection rate of mineral detecting using SWIR bands were calculated to be 0.882 and 0.011, respectively, and the results using only VNIR bands were 0.891 and 0.037, respectively. It was found that the detection rate when the SWIR bands were additionally used was lower than that when only the VNIR bands were used. However, it was found that the false detection rate was significantly reduced, and through this, it was possible to confirm the applicability of SWIR bands in mineral detection.

Effect of Temperature and Host Plant on Development and Reproduction of the Sweetpotato Whitefly, Bemisia tabaci(Homoptera:Aleyrodidae) (담배가루이의 발육과 생식에 미치는 온도와 기주의 영향)

  • 안기수;이기열;최미현;김정화;김기하
    • Korean journal of applied entomology
    • /
    • v.40 no.3
    • /
    • pp.203-209
    • /
    • 2001
  • Development and reproduction of the sweetpotato whitefly, Bemisia tabaci(B biotype) were investigated under different temperatures and host plants. Developmental periods from egg to pre-adult of whiteflies measured under four constant temperatures: they were 86.2 days at $15^{\circ}C$ and 17.0 days at $30^{\circ}C$. Lower threshold temperature and total effective temperature for the development of egg and nymph, and for the complete development (egg to emergence) were $10.1,\;11.6,\;11.1^{\circ}C$ and 110.3, 204.7, 317.3 degree days, respectively. The hatching and emergence rates were 87.0% at $25^{\circ}C$ and 76.7% at $20^{\circ}C$, which were higher than the results of other temperatures. The adult longevity was 23.6 and 14.0 days at $20^{\circ}C$ and $30^{\circ}C$, respectively. The highest average fecundity per female was 103.3 at $25^{\circ}C$. But there were no significant differences among the temperatures. The highest intrinsic rate of natural increase($r_{m}$) was 0.196 at $30^{\circ}C$ and the highest net reproduction rate ($R_{o}$) was 97.33 at $25^{\circ}C$. Developmental periods from egg to pre-adult of whiteflies were 21.2 on the tomato, 28.1 on red pepper, 22.2 on eggplant and 25.5 days on poinsetia. The hatching was highest (90.3%) on red paper and emergence rate was highest (89.6%) on eggplant. The longest longevity of adult female was 26.5 days on eggplant, and the average fecundity per female was greater on tomato and eggplant than on other host plants. The intrinsic rate of natural increase($r_{m}$) was the highest on tomato as 0.165 and the net reproduction rate ($R_{o}$) was the highest on eggplant as 106.1. As a result, the optimum range of temperature for the growth of B. tabaci was between $25^{\circ}C$ and $30^{\circ}C$, and the optimum host plant were tomato and eggplant among the plants tested.

  • PDF

Temperature-dependent Development Model of White Backed Planthopper (WBPH), Sogatella furcifera (Horvath) (Homoptera: Delphacidae) (흰등멸구 [Sogatella furcifera (Horvath)] 온도 발육 모델)

  • Park, Chang-Gyu;Kim, Kwang-Ho;Park, Hong-Hyun;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • The developmental times of the immature stages of Sogatella furcifera (Horvath) were investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20~30% RH, and a photoperiod of 14:10 (L:D) h. Eggs were successfully developed on each tested temperature regimes except $12.5^{\circ}C$ and its developmental time was longest at $15^{\circ}C$ (22.5 days) and shortest at $32.5^{\circ}C$ (5.5 days). Nymphs successfully developed to the adult stage from $15^{\circ}C$ to $32.5^{\circ}C$ temperature regimes. Developmental time was longest at $15^{\circ}C$ (51.9 days) and it was decreased with increasing temperature up to $32.5^{\circ}C$ (9.0 days). The relationships between developmental rate and temperature were fitted by a linear model and seven nonlinear models (Analytis, Briere 1, 2, Lactin 2, Logan 6, Performance and modified Sharpe & DeMichele). The lower threshold temperature of egg and total nymphal stage was $10.2^{\circ}C$ and $12.3^{\circ}C$ respectively. The thermal constant required to complete egg and nymphal stage were 122.0 and 156.3 DD, respectively. The Briere 1 model was best fitted ($r^2$= 0.88~0.99) for all developmental stages, among seven nonlinear models. The distribution of completion of each development stage was well described by three non-linear models (2-parameter, 3-parameter Weibull and Logistic) ($r^2$= 0.91~0.96) except second and fifth instar.