• Title/Summary/Keyword: Low-voltage DC

Search Result 1,268, Processing Time 0.031 seconds

SVPWM controlled the Three-phase AC to DC Boost Converter for High Power Factor (SVPWM 방식의 3상 고역율 AC-DC Boost 컨버터)

  • Na, Jae-Hyeong;Lee, Jung-Hyo;Kim, Kyung-Min;Lee, Su-Won;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.327-331
    • /
    • 2008
  • The problems of power factor and harmonics are occurred in converter system which used to SCRs and diodes as power semiconductor devices IGBT was solved that problem, maintain the input line current with sinusoidal wave current of input power source voltage. In this paper, three phase AC to DC boost converter that operates with unity power factor and sinusoidal input currents is presented. The current control of the converter is based on the space vector PWM strategy with fixed switching frequency and the input current tracks the reference current within one sampling time interval. Space vector PWM strategy for current control was materialized as a digital control method. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

Modeling and Control of ISOP Active-Clamp-Forward Converter for xEV Low Voltage DC/DC Converter

  • Naradhipa, Adhistira M.;Kim, Byeongwoo;Kim, Kangsan;Cho, Woosik;Choi, Sewan;Huh, Dongyoung;Kim, Soohong;Cho, Kyungrae
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.99-101
    • /
    • 2018
  • This paper present an input-series output-parallel active-clamp-forward converter for low voltage dc/dc xEV application. The converter can achieve ZVS turn-on for all switches. An accurate small signal model of the converter which includes the effect of leakage inductance is given and controller design based on modeling is described. Experimental and simulation results from a 3.2kW, 100kHz prototype are presented in order to verify the validity of the converter operation and the designed control parameters.

  • PDF

High Efficiency Quasi-Parallel Resonant DC-Link Inverter with Lossless Controllable Zero Voltage Interval (가변 무손실 영전압 스위칭 구간 특성을 가지는 고효율 공진형 DC-Link Inverter)

  • Kwon, K.A.;Park, J.S.;Park, Mig-Non;Kim, K.H.;Jung, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.350-352
    • /
    • 1996
  • A Hight Efficiency Quasi-Parallel Resonant DC-Link Inverter which shows highly improved PWM capability, low loss characteristic and low voltage stress is presented. A method to minimize freewheeling interval, which is able to largely decrease DC-link operation losses and to steadily guarantee soft switching in the wide operation region is proposed. Analysis and simple experiments were performed to verify validity of the proposed inverter topology.

  • PDF

Development of 3kW Low Voltage DC-DC Converter for Electric Vehicle (3kW급 전기자동차용 직류변환장치 개발)

  • Lee, Dong-Ryul;Park, Jun-Woo;Kang, Chan-Ho;Hong, Sung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.175-176
    • /
    • 2014
  • 본 논문은 전기자동차에 사용되는 배터리 충전기로써 3kW급 고효율 저전압 직류변환장치(LDC : Low Voltage DC-DC Converter) 개발에 관하여 기술한다. 토폴로지(Topology)는 LDC에 적합한 강압형 컨버터로써 전류를 분산시켜 효율증대가 가능한 다중 위상 벅 컨버터(Multi-phase Buck Converter) 구조를 채택하였다. 제안된 방식은 결합 인덕터(Coupled Inductor)를 사용하여 부피를 저감시킬 수 있으며, 디지털 제어를 이용하여 상위 제어기와의 통신을 할 수 있는 장점이 있다. 본 논문에서는 제안된 방식의 타당성을 검증하기 위하여 이론적으로 분석하며, 3kW급 시제품을 제작하여 제안방식의 타당성을 검증하였다.

  • PDF

Low voltage DC-to-DC converter integrating boost converter into forward converter for charging auxiliary battery in hybrid electric vehicle (부스트컨버터와 포워드컨버터의 결합을 이용한 하이브리드 전기자동차의 보조배터리 충전용 저전압 직류 변환장치)

  • Lee, Ju-Young;Kim, Seong-Hye;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.136-137
    • /
    • 2012
  • 본 논문에서는 하이브리드 전기자동차의 전장시스템 에너지 공급을 위한 보조배터리 충전용 저전압 직류 변환장치(Low voltage DC-to-DC Converter, LDC)를 제안한다. 차량 탑재용의 특성상 소형 경량화 설계 기술을 통한 연비증가, 동력성능의 향상이 매우 중요하다. 본 논문에서 제안하는 LDC는 부스트와 포워드 컨버터 구조를 혼합한 형태로 부스트 컨버터의 입력 인덕터를 변압기로 대체하여 포워드 컨버터와 결합시킴으로서 출력전압의 승 강압 동작을 구현한다. 따라서 차량 시동 시 내연기관을 구동하기 위한 승압모드로 동작하고, 그 외 일반적인 경우는 차량 내 각종 전장부하에 전력을 공급하기 위한 강압모드로 동작된다. 제안된 컨버터의 동작 모드에 따른 이론적 분석을 시행하고 PSIM을 이용한 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Traceable AC Voltage and Current Measurements Using Digital Sampling Technique (디지털 샘플링 방법을 사용한 교류전압과 전류의)

  • Wijesinghe, W.M.S.;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.686_687
    • /
    • 2009
  • The traceability maintenance system for the AC voltage and current has been developed at the frequency range of 20 Hz to 100 Hz without using any compensation technique which is used at thermal converter (TC) ac-dc transfer system at low frequencies. The system uses a digital voltmeter (DVM) as a data acquisition system of the input waveform and stored data in memory. The developed algorithm acquires and processes the sampling data to calculate the root mean square (rms) value of the input voltage of DVM which operates at DC 10 V range for better accuracy. The best uncertainty of the AC voltage measurements is $3 {\mu}V/V$ within the frequency range. The best uncertainty of the AC current measurements is better than the $5 {\mu}A/A$ and mainly depend on the current to voltage converter, ac-dc current shunt or Current Transformer (CT), used for the measurement

  • PDF

The design of the high efficiency DC-DC Converter with Dynamic Threshold MOS switch (Dynamic Threshold MOS 스위치를 사용한 고효율 DC-DC Converter 설계)

  • Ha, Ka-San;Koo, Yong-Seo;Son, Jung-Man;Kwon, Jong-Ki;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • The high efficiency power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device is proposed in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuits consist of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit as a block. The Saw-tooth generator is made to have 1.2 MHz oscillation frequency and full range of output swing from ground to supply voltage(VDD:3.3V). The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 95% at 100mA output current. And DC-DC converter is designed with LDO in stand-by mode which fewer than 1mA for high efficiency.

  • PDF

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

A Novel Switched Capacitor High Step-up dc/dc Converter Using a Coupled Inductor with its Generalized Structure

  • Hamkari, Sajjad;Moradzadeh, Majid;Zamiri, Elyas;Nasir, Mehdi;Hosseini, Seyed Hossein
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.579-589
    • /
    • 2017
  • In this study a new high step-up dc-dc converter is presented. The operation of the proposed converter is based on the capacitor switching and coupled inductor with a single active power switch in its structure. A passive voltage clamp circuit with two capacitors and two diodes is used in the proposed converter for elevating the converter's voltage gain with the recovered energy of the leakage inductor, and for lowering the voltage stress on the power switch. A switch with a low $R_{DS}$ (on) can be adopted to reduce conduction losses. In the generalized mode of the proposed converter, to reach a desired voltage gain, capacitor stages with parallel charge and series discharge techniques are extended from both sides of secondary side of the coupled inductor. The proposed converter has the ability to alleviate the reverse recovery problem of diodes with circuit parameters. The operating principle and steady-states analyses are discussed in detail. A 40W prototype of the proposed converter is implemented in the laboratory to verify its operation.

Electroluminescence Characteristics of OLED by Full-Wave Rectification Alternating Current Driving Method (전파 정류 교류 구동 방식에 의한 OLED의 전계발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.320-325
    • /
    • 2022
  • Single OLED and tandem OLED was manufactured to analyze the electroluminescence characteristics of DC driving, AC driving, and full-wave rectification driving. The threshold voltage of OLED was the highest in DC driving, and the lowest in full-wave rectification driving due to an improvement of current injection characteristics. The luminance at a driving voltage lower than 10.5 V (8,534 cd/m2) of single OLED and 20 V (7,377 cd/m2) of a tandem OLED showed that the full-wave rectification drive is higher than that of DC drive. The luminous efficiency of OLED is higher in full-wave rectification driving than in DC driving at low voltage, but decrease at high voltage. The full-wave rectification power source may obtain higher current density, higher luminance, and higher current efficiency than the AC power source. In addition, it was confirmed that the characteristics of AC driving and full-wave rectification driving can be predicted from DC driving characteristics by comparing the measured values and calculated values of AC driving and full-wave rectification driving emission characteristics. From the above results, it can be seen that OLED lighting with improved electroluminescence characteristics compared to DC driving is possible using full-wave rectification driving and tandem OLED.