• Title/Summary/Keyword: Low-temperature solid oxide fuel cell

Search Result 55, Processing Time 0.028 seconds

Numerical Analysis of the Heat and Mass Transfer Characteristics in Metal-Supported Solid Oxide Fuel Cell (금속지지체형 고체산화물 연료전지의 열 및 물질전달 특성에 대한 전산해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.143-146
    • /
    • 2009
  • The metal-supported SOFC has beed developed as a new concept of SOFC which has higher mechanical strength. However, the mass transfer rate in this type of SOFC may be decreased due to the contact layer and the support layer and that can cause the low performance. Therefore, numerical analysis of the heat and mass transfer characteristics in a metal-supported solid oxide fuel cell(SOFC) is studied in this paper. Governing equations and electrochemical equations are calculated simultaneously. And the numerical results are compared with the experimental results for the code validation. The current density, temperature, and pressure drop are suggested as numerical results.

  • PDF

Thin Film (La0.7Sr0.3)0.95MnO3-δ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-Temperature Operation

  • Noh, Ho-Sung;Son, Ji-Won;Lee, Heon;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • The feasibility of using the thin film technology in utilizing lanthanum strontium manganite (LSM) for a solid oxide fuel cell (SOFC) cathode in a low-temperature regime is investigated in this study. Thin film LSM cathodes were fabricated using pulsed laser deposition (PLD) on anode-supported SOFCs with yttria-stabilized zirconia (YSZ) electrolytes. Although cells with a 1 ${\mu}m$-thick LSM cathode showed poor low-temperature cell performance compared to that of a cell with a bulk-processed cathode due to the lack of a triple-phase boundary length, the cell with 200 nm-thick gadolinia-doped ceria (GDC) inserted between the LSM and YSZ showed enhanced performance and more stable operation characteristics in a comparison of a cell without a GDC layer. We postulate that the GDC layer likely improved the cathode adhesion, therefore contributing to the improvement of the cell performance instead of serving as an interfacial reaction buffer.

Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells

  • Park, Eun Kyung;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.

Deposition of Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells by Combined Thin Film Deposition Techniques (복합 박막 증착 공정을 이용한 중저온 고체산화물 연료전지용 전해질 증착)

  • Ha, Seungbum;Jee, Sanghoon;Tanveer, Waqas Hassan;Lee, Yoonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.84.1-84.1
    • /
    • 2011
  • Typical solid oxide fuel cells (SOFCs) have limited applications because they operate at high temperature due to low ionic conductivity of electrolyte. Thin film solid oxide fuel cell with yttria stabilized zirconia (YSZ) electrolyte is developed to decrease operating temperature. Pt/YSZ/Pt thin film SOFC was fabricated on anodic aluminum oxide (AAO). The crystalline structure of YSZ electrolyte by sputter is heavily depends on the roughness of porous Pt layer, which results in pinholes. To deposit YSZ electrolyte without pinholes and electrical shortage, it is necessary to deposit smoother and denser layer between Pt anode layer and YSZ layer by sputter. Atomic Layer Deposition (ALD) technique is used to deposit pre-YSZ layer, and it improved electrolyte quality. 300nm thick Bi-layered YSZ electrolyte was successfully deposited without electrical shortage.

  • PDF

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Evaluation of Initial Operation Stability of Hydrogen-Fueled, Low-Temperature Solid Oxide Fuel Cell with Sputtered Ni Thin-Film Anode (스퍼터링 니켈박막 연료극 적용 수소공급 저온 세라믹 연료전지의 초기작동 안정성 평가)

  • SANGHOON JI;WEONJAE KIM;SANGJONG HAN;HYANGYOUN CHANG;NARI PARK;MISEON KIM;SUNGWON KANG;HYUNMAN LIM;JINHONG JUNG;KWANGHO AHN;MIRATUL MAGHFIROH;SUK WON CHA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.743-748
    • /
    • 2022
  • The initial operation stability of hydrogen-fueled, solid oxide fuel cell with Ni thin-film anode fabricated by direct current sputtering was evaluated in terms of electrochemical properties such as peak power density, open circuit voltage, overpotential, and alternating current impedance at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively.

Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC) (중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System (고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF