Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.1.33

Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells  

Park, Eun Kyung (School of Applied Chemical Engineering, Chonnam National University)
Yun, Jeong Woo (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.1, 2016 , pp. 33-40 More about this Journal
Abstract
Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.
Keywords
Solid oxide fuel cell; Sr0.92Y0.08TiO3-δ ; methane; alternative anode; carbon deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. M. Lee, Y. G. Kim, S. J. Lee, H. S. Kim, S. P. Yoon, S. W. Nam, S. D. Yoon and J. W. Yun, J. Appl. Electrochem, 44, 581 (2014)   DOI
2 Q. Fu, F. Tietz, D. Sebold, S. Tao and J. T. S. Irvine, J. Power Sources, 171, 663 (2007).   DOI
3 H. He, Y. Huang, J. M. Vohs and R. J. Gorte, Solid State Ionics, 175, 171 (2004).   DOI
4 J. W. Yun, H. C. Ham, H. S. Kim, S. A. Song, S. W. Nam and S. P. Yoon, J. Electrochem. Soc., 160, F153 (2013).
5 M. Y. Yoon, R.-H. Song, D.-R. Shin and H. J. Hwang, J. Korean Powder Metall. Inst., 17(1), 59 (2010).   DOI
6 J. M. Lee, Y. G. Kim, S. J. Lee, H. S. Kim, S. P. Yoon, S. W. Nam, S. D. Yoon and J. W. Yun, J. Appl. Electrochem., 44, 581 (2014).   DOI
7 J. B. Goodenough and Y.-H. Huang, J. Power Sources, 173, 1 (2007).   DOI
8 S. Hui and A. Petric, J. European Ceramic Society, 22, 1673 (2002).   DOI
9 X. Huang, H. Zhao, W. Shen, W. Qiu and W. Wu, J. Physics and Chemistry of Solids, 67, 2609 (2006).   DOI
10 S. Hui and A. Petric, J. Electrochem. Soc. 149(1), J1 (2002).   DOI
11 V. Vasechko, B. Huang, Q. Ma, F. Tietz and J. Malzbender, J. Eur. Ceram. Soc., 34, 3749 (2014).   DOI
12 G. Xiao and F. Chen, Frontiers in Energy research, 2(18), 1 (2014).
13 N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya and T. Iwata, J. Mater. Sci., 25, 4531 (1990).   DOI
14 M. Mori and N. M Sammes, Solid State Ionics, 146, 301 (2002).   DOI
15 K. Huang and J. B. Goodenough, Solid oxide fuel cell technology: Principles, Performance and Operations, Elesevier (2009).
16 H. S. Kim, S. P. Yoon, J. W. Yun, S. A. Song, S.-C. Jang, S. W. Nam and Y.-G. Shul, International Journal of hydrogen energy, 37, 16130 (2012).   DOI
17 A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal and J. Vohs, Nature mater., 3, 17 (2004).   DOI
18 H. S. Kim, G. S. Kim, J. W. Yun, H. C. Ham, J. H. Jang, J. H. Han, S. W. Nam, Y.-G. Shul and S. P. Yoon, Ceramics International, 40, 8237 (2014).   DOI
19 Q. X. Fu, S. B. Mi, E. Wessel and F. Tietz, J. Eur. Ceram. Soc., 28, 811 (2008).   DOI
20 M. García-Gabaldóna, V. Pérez-Herranz, E. Sánchezb and S. Mestre , J. Memb. Sci., 280, 536 (2006).   DOI
21 R. M. Ormerod, Chem. Soc. Rev., 32, 17 (2003).   DOI