• Title/Summary/Keyword: Low-Salinity Water

Search Result 544, Processing Time 0.025 seconds

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006

  • Mohan, Rahul;Shukla, Sunil Kumar;Anilkumar, N.;Sudhakar, M.;Prakash, Satya;Ramesh, R.
    • ALGAE
    • /
    • v.24 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.

Mean Characteristics of Temperature, Salinity and Chlorophyll-α at the Surface Water in the Northern East China Sea (동중국해 북부 해역 표층의 평균적 해황과 chlorophyll-α의 분포)

  • Choi, Yong-Kyu;Suh, Young-Sang;Seong, Ki-Tack;Yoon, Won-Duk;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • In order to investigate the effect of inflow of Yangze river on the distribution of chlorophyll-${\alpha}$, the results of serial oceanographic observation during 2000-2005 were used. The oceanographic conditions in the northern East China Sea is influenced by the Tsushima Warm Current and low saline water derived from the Yangze river. The distributions of these water masses vary significantly by the season in the northern East China Sea. The sea surface temperature and salinity were stable and concentrations of chlorophyll-${\alpha}$ were low in the eastern part of $126^{\circ}E$. On the contrary, the salinity was significantly influenced by the low saline water derived from Yangze river with the high concentrations of chlorophyll-${\alpha}$. It is suggested that the low saline water inflowed from the Yangze river affects high concentrations of chlorophyll-${\alpha}$ in the northern East China Sea in summer.

Effects of Environmental Factors Such as Temperature and Salinity on Expression of Interleukin-1 Receptor Accessory Protein in the Red Seabream (Pagrus major) (온도 및 염분 등의 환경요인이 참돔(Pagrus major)의 Interleukin-1 Receptor Accessory Protein 발현에 미치는 영향)

  • Kang, Han Seung;Min, Byung Hwa
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.70-74
    • /
    • 2017
  • Interleukin-1 (IL-1) is one of the proinflammatory cytokines, after IL-1 binds to IL-1RI, IL-1RacP (interleukin-1 receptor accessory protein) joins with IL-1/IL-1RI to form a complex, and leading to cell activation. IL-1RAcP is involved in immune response, stress and apoptosis. The purpose of this study was to investigate the gene expression of IL-1RAcP in red seabream (Pagrus major) exposure to low water temperature (8℃, 33 psu) and low salinity (20℃, 10 psu). Results showed that, the expression of IL-1RAcP was significantly increased in the experiment groups, such as low water temperature (8℃, 33 psu), and low salinity (20℃, 10 psu). These results suggest that IL-1RAcP was played roles in biomarker gene on the environmental stress such as low water temperature and low salinity.

Characteristics of Red Tide Blooms in the Lower reaches of Taehwa River (태화강 하류의 적조발생 특성)

  • Cho, Hong-Je;Yoon, Yeong-Bae;Kang, Ho-Seon;Yoon, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.453-462
    • /
    • 2011
  • This study was analyzed to determine the cause of red tide at 10 and 30 days antecedental rainfall, stage and discharge in the Taehwa River, tidal data of Ulsan port, also, it was analyzed variation of red tide population, salinity, BOD, COD, T-N, T-P at S1, S2 each point. Most of the red tide in the Taehwa River occurred by provision of proper nutrients with antecedent, the proximity between discharge and low-flow capacity, and stage and discharge of stabilized condition after the sea water was inflowed by maximum tide difference. Red tide population is not nearly related to the change of salinity, the Taehwa River seems specific features of Non-coastal rivers downstream, because red tide was occurred when salinity quite low-end condition.

Characteristics of the Oceanographic Environment in the Aleutian Basin of the Bering Sea during Spring (춘계 베링해 알류산 해분의 해양환경 특성)

  • Choi, Seok-Gwan;Oh, Taeg Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.201-215
    • /
    • 2013
  • The characteristics of the oceanographic environment in the Aleutian Basin of the Bering Sea during spring in 1996, 1997, and 1999 were clarified. An investigation of the water properties revealed five basic layers in the Bering Sea during spring: (1) a surface layer of warm and low-salinity water induced by solar heating, (2) a subsurface layer of cold and low-salinity water propagated slowly by heat from the surface layer, (3) a thermocline layer where salinity was constant but temperature sharply decreased, (4) a temperature inversion layer, and (5) a deep layer with a gradual decrease in temperature and increase in salinity toward the bottom. The ranges of water temperature and salinity were $1.8-5.5^{\circ}C$ and 31.81-34.08 in 1996, $1.5-7.2^{\circ}C$ and 31.9-34.06 in 1997, and $0.5-5.6^{\circ}C$ and 32.0-34.11 in 1999, respectively. The water temperature of the surface layer was approximately $1.6^{\circ}C$ higher in 1997 than in 1996 and 1999. The lowest temperature at a depth of 100-150 m was about $1^{\circ}C$ lower in 1999 than in 1996 and 1997. Nutrient levels (nitrate, phosphate, and silicate) contributing to the control of the growth of phytoplankton were higher in the Aleutian Basin than in the eastern continental shelf and Bogoslof Island area. This was closely associated with the phytoplankton distribution. Nutrient concentrations were lowest at a depth of 25 m. The high primary production at that depth was confirmed from the vertical distribution of chlorophyll a. Chlorophyll a levels were above $4.0{\mu}L^{-1}$ in some areas in 1996 and 1999, but below $2.0{\mu}L^{-1}$ in most areas in 1997. Zooplankton density was about three times higher in 1999 than in 1997.

General Characteristics of the East Sea Intermediate Water (동해중층수의 일반적인 분포 특성)

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Lee, Jae-Hak;Kim, Bong-Chae;Hwang, Sang-Chull;Seung, Young-Ho;Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • To obtain the overall distribution patterns and characteristics of the East Sea Intermediate Water (ESIW), the historical data obtained by the Japan Maizuru Marine Observatory (MMO) and the Korea Ocean Research and Development Institute (KORDI) were analyzed. To obtain water characteristics of the ESIW on isopycnal surfaces, temperature, salinity and dissolved oxygen were interpolated at every 0.01 interval of potential density. And then the interpolated values were averaged at the same potential density. This potential density average method preserved the salinity minimum layer more clearly compared to the depth average method. The potential density(${\sigma}_{\theta}$) range of the ESIW was $26.9{\sim}27.3$. The representative potential density of the ESIW was found to be 27.2, because the characteristics of the ESIW was clear at this density. From the horizontal distributions of physical properties on the isopycnal surface of $27.2{\sigma}_{\theta}$ it is suggested that the low salinity ESIW circulates anticlockwise over the whole basin with the high salinity intermediate water. The low salinity intermediate water extended from the northwestern part to the east along the sub-polar front and to the Ulleung Basin along the east coast of Korea.

Environmental Characteristics and Catch Fluctuations of Set Net Ground in the Coastal Water of Hanlim in Cheju Island I. Properties of Temperature and Salinity (제주도 한림 연안 정치망어장의 환경특성과 어획량변동에 관한 연구 I. 수온 및 염분특성)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.859-868
    • /
    • 1998
  • In order to investigate the relation between the marine environmental characteristics and the change of the catch in set net, the marine environment properties were analyzed by temperature and salinity observed in the western coastal area of Cheju Island from 1995 to 1996 and the results are as follows 1) Main axis of Tsushima Current appeared in the western coastal area of Cheju Island was off 2$\~$3 miles from November to May. Therefore the waters of high temperature over $14^{\circ}C$ and high salinity from $34.40\%_{\circ}$ to $34.60\%_{\circ}$ were distributed homogeneously from surface to bottom in this time. But China Coastal Waters of low salinity appeared in the Cheju Strait from June to October, surface waters became of high temperature and low salinity, and middle and bottom waters became of the temperature from 11 to $14^{\circ}C$ and the salinity over $33.50\%_{\circ}$ and then vertically sharp thermocline and halocline are formed in the western coastal area of Cheju Island. In summer, the water temperature and salinity of the surface waters in wstern coastal area of Cheju Island were lower and higher respectively than that in middle area of the Cheju Strait and the temperature and salinity of the bottom waters in this area were higher and lower, respectively than that in middle area of the Cheju Strait. Such a distribution shows a tidal front in this coastal area. On the whole year, surface temperature and salinity were from 14 to $23^{\circ}C$ and from 30.60 to $34.60\%_{\circ}$, respectively, and annual fluctuation range of temperature and salinity was within $9^{\circ}C$ and $4.00\%_{\circ}$, respectively, Thus, annual fluctuation range in this area is much narrower than that in the Cheju Strait. In bottom water, temperature ranges from 14 to $20^{\circ}C$ through the year. Thus, the fluctuation range of temperature is narrow. The low temperature of from $11^{\circ}C$ to $13^{\circ}C$ appeared in the west enterance of Cheju Strait was not shown in this coastal area. 2) The salinity of bottom water was from $33.60\%_{\circ}$ to $34.40\%_{\circ}$ in 1995, while low salinity wale. below $32.00\%_{\circ}$ appeared all depth from June in 1996. Thus, the variation of hydrographic conditions in this area is narrow in winter, and wide in summer due to the influence of China Coastal Waters. 3) In summer, surface cold water, local eddy and fronts of temperature and salinity were showed within 2 mile from the west coast of the Cheju Island due to vertical mixing by tidal current. Especially, temperature and salinity of bottom water are changed with the change of depth around Biyang-Do. Thus, the front of temperature and salinity appeared clearly between shallow area with the depth of under 10 m and deep area with of the depth of more than 50m. Surface water in outside area where high temperature and low salinity water appear intrudes between Worlreong-Ri and Geumreung-Ri. Thus, the front of temperature and salinity was made along the line that connects from this coast to Biyang-Do, The temperature of the bottom water is $2^{\circ}C$ to $4^{\circ}C$ lower than that of the surface water and its salinity is $0.02\%_{\circ}$ to $0.08\%_{\circ}$ higher than that of the surface water even in shallow area.

  • PDF

Oil Production Evaluation for Hybrid Method of Low-Salinity Water and Polymer in Carbonate Oil Reservoir (탄산염암 저류층에 저염수주입공법과 폴리머공법의 복합 적용에 따른 오일 생산량 평가)

  • Lee, Yeonkyeong;Kim, Sooyeon;Lee, Wonsuk;Jang, Youngho;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.53-61
    • /
    • 2018
  • Low-salinity water based polymerflooding (LSPF) is one of promising enhanced oil recovery (EOR) method that has the synergetic effect of combining polymer injection method and low-salinity water injection method. In order to maximize EOR efficiency, it is essential to design low-salinity water appropriately considering the properties of polymer. In this aspect, the main purpose of this study is to investigate the effect of pH and $SO_4{^{2-}}$ ion which one of PDI (Potential Determining Ion) on oil production when applying LSPF to carbonate oil reservoir. First, the stability and adsorption of polymer molecule were analyzed in different pH of injection water and $SO_4{^{2-}}$ concentration in injection water. As a result, regardless of pH and $SO_4{^{2-}}$ concentration, when $SO_4{^{2-}}$ ion was contained in injection water, the stability of polymer solution was obtained. However, from the result of polymer retention analysis, in neutral state of injection water, since $SO_4{^{2-}}$ interfered the adsorption of polymer, the adsorption thickness of polymer was thinner as $SO_4{^{2-}}$ concentration was higher. On the other hand, when injection water was acidic as pH 4, the amount of polymer adsorption increased with the injection of polymer solution, so the mobility of polymer solution was greatly lowered. From the results of wettability alteration due to low-salinity water effect, in the case of neutral injection water injected, as $SO_4{^{2-}}$ concentration was increased, more oil which attached on rock surface was detached, altering wettability from oil-wet to water-wet. On the other hand, in acidic condition, due to complex effect of rock dissolution and polymer adsorption, wettability of the entire core system was less altered relatively to neutral condition. Therefore, it was evaluated that better EOR efficiency was obtained when injecting low-salinity water based polymer solution containing high concentration of $SO_4{^{2-}}$ with neutral condition, enhancing the oil production up to 12.3% compared to low-salinity water injection method.

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.

Influence of Low Salinity and Cold Water Temperature on the Hatching, Survival and Growth of the Offspring of Grunt, Hapalogenys nitens (동갈돗돔, Hapalogenys nitens 난과 자치어의 생존 및 성장에 미치는 저염분 및 저수온의 영향)

  • Kang, Hee-Woong;Jun, Je-Cheon;Kang, Duk-Young;Jo, Ki-Che;Choi, Ki-Ho;Kim, Gyu-Hee
    • Korean Journal of Ichthyology
    • /
    • v.21 no.3
    • /
    • pp.158-166
    • /
    • 2009
  • To obtain the fundamental data for the mass seedling production of grunt, Hapalogenys nitens, we investigated the influence of salinity and cold water temperature on hatching and survival of eggs and growth and survival of larvae and fry. In regards to salinity, we surveyed the hatching rate and floating rate of fertilized eggs, the floating rate and survival rate of hatching larvae, and the survival and growth of fry. In respect to cold temperature, we investigated the influence of degree of daily temperature decrease, acute temperature shock, and slow temperature decreases on the survival, feeding and swimming activities of fry. In the salinity experiment, the hatching and floating rates of fertilized eggs, and the floating and survival rates of hatching larvae, were shown to be higher in seawater than in brackish water. Growth and survival of larvae and fry were not different between seawater (25~32 psu) and brackish water (5~20 psu), but were significantly lower in freshwater. In the cold-temperature test, three tests showed that rearing of fry in cold water and acutely decreasing water temperature to less than $10^{\circ}C$ reduced the survival, feeding and swimming activities of the fry. Therefore, we concluded that low salinity (less than 32 psu) could reduce the hatching rate and survival of eggs, but the growth and survival of fry were not influenced by salinity, and cold water (less than $10^{\circ}C$) decreased metabolism of grunt. During winter, we found a low-temperature limit at $8^{\circ}C$.