Browse > Article
http://dx.doi.org/10.4490/ALGAE.2009.24.3.139

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006  

Mohan, Rahul (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences))
Shukla, Sunil Kumar (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences))
Anilkumar, N. (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences))
Sudhakar, M. (National Centre for Antarctic & Ocean Research (Ministry of Earth Sciences))
Prakash, Satya (Physical Research Laboratory)
Ramesh, R. (Physical Research Laboratory)
Publication Information
ALGAE / v.24, no.3, 2009 , pp. 139-147 More about this Journal
Abstract
Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.
Keywords
East Antarctica; nutrients; phytoplankton; Prydz Bay; salinity; temperature; total chlorophyll;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Archambeau A.S., Pierre C., Poisson A. and Schauer B. 1998. Distribution of oxygen and carbon stable isotopes and CFC-12 in the water masses of the Southern Ocean at $30^{\cir}E$ from South Africa to Antarctica: results of CIVA1 cruise. J. Mar. Syst. 17: 25-38   DOI   ScienceOn
2 Arrigo K.R., Robinson D.H., Worthen D.L., Dunbar R.B., DiTullio G.R., VanWoert M. and Lizotte M.P. 1999. Phytoplankton Community Structure and the Drawdown of Nutrients and $CO_{2}$ in the Southern Ocean. Science. 283: 365-367   DOI   ScienceOn
3 Babichenko S., Kaitala S., Leeben A., Poryvkina L. and Sépala J. 1999. Phytoplankton pigments and dissolved organic matter distribution in the Gulf of Riga. J. Mar. Syst. 23: 69-82   DOI   ScienceOn
4 Nicol S., Pauly T., Bindoff N.L. and Strutton P.G. 2000. “BROKE” a biological/oceanographic survey off the coast of East Antarctica (80-1500 E) carried out in January-March 1996. Deep-Sea Res.-II 47: 2281-2298   DOI   ScienceOn
5 Park Y.H., Charriaud E. and Fieux M. 1998. Thermohaline structure of Antarctic surface water/winter water in the Indian sector of the Southern Ocean. J. Mar. Sys. 17: 5-23   DOI   ScienceOn
6 Smith N.R., Zhaoqlan D., Kerry K.R. and Wright S. 1984. Water masses and Circulation in the region of Prydz Bay, Antarctica. Deep Sea Res.-A 31: 1121-1147.   DOI   ScienceOn
7 Swithinbank C.W.M., McClain P. and Little P. 1977. Drift tracks of Antarctic icebergs. Polar Rec. 18: 495-501   DOI
8 Buma A.G.J., Gieskes W.W.C. and Thomsen H.A. 1992. Abundance of Cryptophyceae and chlorophyll-b contain-ing organisms in the Weddell-Scotia Confluence area in the spring of 1988. Pol. Biol. 12: 43-52
9 Bidigare R.R., Frank T.J., Zastrow C. and Brooks J.M. 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep Sea Res. 33: 923-937   DOI   ScienceOn
10 Bricaud A., Morel A. and Prieur L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnolog. Oceanogra. 26: 43-53
11 Deacon G.E.R. 1982. Physical and biological zonation in the Southern Ocean. Deep-Sea Res. Part A 29: 1-16   DOI   ScienceOn
12 Desidario R.A., Moore C., Lantz C. and Cowles T.J. 1997. Multiple excitation fluorometer for in situ oceanographic applications. App. Opt. 36: 1289-1296   DOI
13 Edgar R.K. and Laird K. 1993. Computer simulation of error rates of Poisson-based interval estimates of plankton abundance. Hydrobiol. 264: 65-77   DOI   ScienceOn
14 Holm-Hansen O. 1965. Fluorometric determination of Chlolophyll. J. de Cons. Pour. Int. Exp. de la Mer. 30: 3-15   DOI
15 Yentsch C.H. and Yentsch C.M. 1979. Fluorescence spectral signatures: The characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res. 37: 471-483
16 El-Sayed S.Z. and Fryxell G.A. 1993. Phytoplankton. In: Friedman E.I. (ed.), Antarctic Microbiology. Wiley-Leiss, Inc. Publ. pp. 65-122
17 Fogg G.E. 1977. Aquatic primary production in the Antarctica. Philos. Trans. Roy. Soc., London 179: 27-38   DOI
18 Gibson J.A.E. and Trull T.W. 1999. Annual cycle of $fCO_{2}$ under sea-ice and in open water in Prydz Bay, East Antarctica. Mar. Chem. 66: 187-200   DOI   ScienceOn
19 Hewes C.D., Holm-Hansen O. and Sakshaug E. 1985. Alternate carbon pathways at low trophic levels in the Antarctic food web. In: Siegfried W.R., Condy P.R. amd Laws R.M. (eds), Antarctic Nutrients Cycles and Food Webs. Springer, Berlin. pp. 277-283
20 Hilton J., Rigg E. and Jaworski G. 1989. Algal differentiation using in vivo fluorescence spectra. J. Plank. Res. 11: 65-74   DOI
21 Davis A.M. and Mcnider R.T. 1997. The development of Antarctic Winds and implications for the Coastal Ocean. J. Atmos. Sci. 54: 1248-1261   DOI   ScienceOn
22 Vincent W.F., Neale P.J. and Richerson P.J. 1984. Photoinhibition: algal responses to bright light during diel stratification and mixing in a tropical alpine lake. J. Phycol. 20: 201-211   DOI
23 Holm-Hansen O., El-Sayed S.Z., Franceschini G. and Cuhel R. 1977. Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: Llano G. (ed.), Adaptations with in Antarctic Ecosystems. Gulf Publishing, Houston. pp. 11-50
24 Jacobs S.S. and Georgi D.T. 1977. Observations on the southwest Indian Antarctic Ocean. In: Angel, M.V. (Ed.), A Voyage of Discovery. Deep-Sea Research, Part A, (Suppl.) 24: 43-8
25 Carrick H.J. and Schelske C.L. 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnolog. Oceanogra. 47: 1613-1621
26 Cowles T.J., Desidario R.A. and Neuer S. 1992. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Mar. Biol. 115: 217-222   DOI   ScienceOn
27 Kolboeski J. and Schreiber U. 1995. Computer-controlled phytoplankton analyzer based on a 4-wavelenght PAM Chl fluorescence. In: Mathis, P. (ed.), Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dordrecht/ Boston/London Vol. 5: 825-828
28 Guillard R.R.L. and Kilham P. 1977. The ecology of marine planktonic diatoms. In: Werner D. (ed.) The Biology of Diatoms, University of California Press. pp. 372-469
29 Tchernia P. and Jeannin P.F. 1980. Observations on the Antarctic East Wind drift using tabular icebergs tracked by satellite Nimbus F (1975-1977). Deep-Sea Res., Part A 27: 467-474   DOI   ScienceOn
30 Gordon A.L., Molinelli E. and Baker T. 1978. Large-scale relative dynamic topography of the Southern Ocean. J. Geophys. Res. 83: 3023-3032   DOI
31 Merchant H.J., Buck K.R., Garrison D.L. and Thomsen H.A. 1989. Mantoniella in Antarctic waters including the description of M. Antarctica sp. nov. (Prasinophyceae). J. Phycol. 25: 167-174   DOI   ScienceOn
32 Kang S.-H. and Fryxell G.A. 1991. Most abundant diatom species in water column assemblages from five Leg 119 Drill sites in Prydz Bay, Antarctica: Distributional Patterns. In: Barron, J. et al. 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 119
33 Kopczynska E.E, Goeyens L., Semeneh M. and Dehairs F. 1995. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its $\delta^{13}$C values. Journal of Plankton Research 17: 685-707   DOI   ScienceOn
34 Middleton J.H. and Humphries S.E. 1989. Thermohaline structure and mixing in the region of Prydz Bay, Antarctica. Deep Sea Res. -A 36: 1255-1266   DOI   ScienceOn
35 Beutler M., Wiltshire K.H., Meyer B., Moldaenke C., Luring C. and Meyrrhöfer M.A. 2002. fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Res. 72: 39-53   DOI   ScienceOn
36 Oldham P.B., Zillioux E.J. and Warner I.M. 1985. Spectral “fingerprinting” pf phytoplankton populations by twodimensional fluorescence and Fourier- transform-based pattern recognition. J. Mar. Res. 43: 893-906   DOI
37 Millie D.F., Schofield O.M.E., Kirkpatrick G.J., Johnson G. and Evens T.J. 2002. Using absorbance and fluorescence spectra to discriminate micro-algae. Eur. J. Phycol. 37: 313-332   DOI   ScienceOn
38 Mitchell B.G. and Holm-Hansen O. 1991. Observations and modelling of the Antarctic phytoplankton crop in relation to mixing depth. Deep-Sea Research 38: 981-1007   DOI   ScienceOn
39 Moline M.A. and Prezelin B.B. 1996. Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over sub-seasonal, seasonal and inter-annual time scales. Mar. Eco. Prog. Ser. 145: 143-160   DOI
40 Kiefer D.A. 1973. Fluorescence properties of natural phytoplankton populations. Mar. Biol. 22: 263-269   DOI
41 Nunes Vaz R.A. and Lennon G.W. 1996. Physical Oceanography of the Prydz Bay region of Antarctic waters. Deep Sea Res. -I 43: 603-641   DOI   ScienceOn
42 Orsi A., Whitworth T. and Nowlin W. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. -I 42: 641-673   DOI   ScienceOn
43 Mura M.P., Satta M.P. and Agusti S. 1995. Water-mass influence of summer Antarctic phytoplankton biomass and community structure. Pol. Biol. 15: 15-20   DOI
44 Porynkina L., Babichenko S., Kaitala S., Kuosa H. and Shalapjonok A. 1994. Spectral fluorescence signatures in the characterization of phytoplankton community composition. J. Plank. Res. 16: 1315-1327   DOI   ScienceOn
45 Kumar S., Ramesh R., Sardesai S. and Sheshshayee M.S. 2004. High new production in the Bay of Bengal: Possible causes and implications, Geophys. Res. Lett. 31: 1-4   DOI   ScienceOn
46 Soohoo J.B., Kiefer D.A., Collins D.J. and McDermid I.S. 1986. In vivo fluorescence excitation and absorption spectra of marine phytoplankton: I. Taxonomic characteristics and responses to photo-adaptation. J. Plank. Res. 8: 97-214   DOI
47 Sparrow M.D., Heywood K.J., Brown J. and Stevens D.P. 1996. Current structure of the South Indian Ocean. J. Geophys. Res. 101: 6377-6391   DOI
48 Mangoni O., Modigh M., Conversano F., Carrada G.C. and Saggiomo V. 2004. Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica. Deep Sea Research Part I 51: 1601-1617   DOI   ScienceOn
49 Strutton P.G., Griffiths F.B., Waters R.L., Wright S.W. and Bindoff N.L. 2000. Primary productivity off the coast of East Antarctica (80-1500E): January to March 1996. Deep-Sea Res.-II, 47: 2327-2362   DOI   ScienceOn
50 Taylor D.L. and Lee C.C. 1971. A new cryptomonad from Antarctica: Cryptomonas cryophila sp. nov. Arch. f. Microbiol. 75: 269-280   DOI
51 Schwarz J.N. and Schodlok M.P. 2008. Icebergs boost phytoplankton growth in the Southern Ocean. Nature Preceedings hdl:10101/npre. 1706.1
52 Yentsch C.H. and Phinney D.A. 1985. Spectral fluorescence: A taxonomic tool for studying the structure of phytoplankton populations. J. Plank. Res. 7: 617-632   DOI
53 Yentsch C.H. and Menzel D.W. 1963. A method for the determination of phytoplankton Chlorophyll by fluorescence. Deep Sea Res. 10: 1221-1231
54 Smith Jr., K.L., Robison B.H., Helly J.J., Kaufmann R.S., Ruhl H.A., Shaw T.J., Twining B.S. and Vernet M., 2007. Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea. Science 317: 478-482   DOI   ScienceOn
55 Zhu G-H., Ning, X-R., Cai Y-M. and Liu Z-L. 2003. Phytoplankton in Prydz Bay and its adjacent sea area of Antarctica during austral summer (1998/1999). Acta Botanica Sinica 45: 390-398
56 Srivastava R., Ramesh R., Prakash S., Anilkumar N. and Sudhakar M. 2007. Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean. Geophys. Res. Lett. 34, L24603, doi:10.1029/2007GL031790   DOI   ScienceOn
57 Stagg H. 1985. The structure and origin of Prydz Bay and Mac. Robertson Shelf, East Antarctica. Tectonophy. 114: 315-340   DOI   ScienceOn
58 Strickland J.D.H. and Parsons T.R. 1965. A manual of sea water analysis. Bull. Fisheries Res. Board Can. 125, 203 pp.
59 Tolstikov E.E. 1966. Atlas Antarktiki (Vol. 1), Moscow (G.U.C.K.). (English translation, Soviet Geography: Reviews and Translations, Am. Geogr. Soc, 8 (1967)
60 Treguer P. and Jacques G. 1992. Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Pol. Biol. 12: 149-162   DOI
61 Schloss I. and Estrada M. 1994. Phytoplankton composition in the Weddell-Scotia Confluence area during austral spring in relation to hydrography. Pol. Biol. 14: 77-90   DOI