• 제목/요약/키워드: Low-Energy Electron Beam

검색결과 141건 처리시간 0.025초

전자선 조사에 따른 폴리이미드 필름의 유전특성 변화 (Effects of Electron Beam Irradiation on the Dielectric Properties of Polyimide Films)

  • 김현빈;전준표;강필현
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.285-288
    • /
    • 2010
  • Polyimide films have excellent thermal stability, reliable mechanical properties and low dielectric constant. Therefore, this material is widely used in many industrial fields such as microelectronics, flexible circuits, semiconductor products and aerospace materials. In space applications, earth-orbiting hardware operates in environments that generally include neutral particles, charged particles such as trapped protons and electrons, solar protons, and cosmic rays. Under these conditions, polyimide films were changed in the optical, electrical and mechanical properties. Therefore, in this study, we evaluated the effects of electron beam irradiation on polyimide. The O-H functional groups were created on the polyimide film surface in the results of FT-IR spectra. And it was found that the dielectric constants were changed as a function of electron beam dose.

생산성 향상을 위한 멀티빔 리소그라피 (Multiple Electron Beam Lithography for High Throughput)

  • 최상국;이천희
    • 한국광학회지
    • /
    • 제16권3호
    • /
    • pp.235-238
    • /
    • 2005
  • 생산성 향상을 위하여 정렬된 마이크로칼럼을 이용하여 멀티-전자빔 리소그라피 장치를 개발하였다. 마이크로칼럼은 매우 작은 크기를 가지고 있어 병렬구조로 정렬하여 작동시킬 수 있다. Single Column Module(SCM) 구조의 멀티 전자빔 리소그라피 시스템과 전자칼럼을 제작하여 250 eV에서 300 eV 에너지 범위에서의 저에너지 마이크로칼럼 리소그라피를 성공적으로 수행하였다. 전자방출원에서 방출되는 전자빔의 총 전류가 $0.5\;{\mu}A$일 때, 샘플에서의 전류는 >1 nA으로 측정되었으며 리소그라피 패텅닝에서 사용된 working distance은 $\~1\;mm$였다.

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

전자선 조사에 따른 탄소섬유 물성 변화 (Effect of Electron Beam Irradiation on the Properties of Carbon Fiber)

  • 전준표;신혜경;김현빈;강필현
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.259-263
    • /
    • 2010
  • Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface elements of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermalgravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation.

저 에너지 초소형 전자칼럼 리소그래피를 이용한 SiO2 박막의 Pattern 제작에 관한 연구 (Study of SiO2 Thin Film Patterning by Low Energy Electron Beam Lithography Using Microcolumns)

  • 요시모토 다카토시;김호섭;김대욱;안승준
    • 한국자기학회지
    • /
    • 제17권4호
    • /
    • pp.178-181
    • /
    • 2007
  • 반도체의 고 집적회로를 형성하기 위하여 주로 이용하고 있는 광 리소그래피 기술을 대신하여 사용할 수 있는 차세대 리소그래피 기술로 전자빔 리소그래피 기술에 대한 연구가 진행되고 있다. 본 연구에서는 초소형 전자칼럼을 이용하여 전자빔 에너지와 조사농도에 따른 pattern 두께의 의존성을 조사하였으며 두께가 100nm인 $SiO_2$ 박막의 patterning을 통하여 $SiO_2$ 박막에 대한 저 에너지 전자빔 리소그래피 공정의 가능성을 입증하였다.

9%Ni 강의 전자빔 용접성에 관한 연구 (III) - 전자빔 용접부 기계적 특성과 조직 - (A Study on electron beam veldability of 9%Ni steels (III) - Microstructures and mechanical properties of welded joints -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.116-125
    • /
    • 1997
  • Electron beam weldability of 9%Ni steels has been investigated to apply EBW to the construction of LNG storage tank. While mechanical properties of welded joints were satisfied by ASTM specification, impact energy of weld metal was as low as 27 - 55J at $-196^{\circ}C$. As the result of Ni wires inserted at the joint to be welded, Ni content of weld metal was increased to about 10%, resulting on the improvement of impact toughness to 110 ~ 120J at $-196^{\circ}C$. This improvement of impact toughness in weld metal was due to the formation of tempered martensite and retained austenite. Above results indicate that, if Ni content of weld metal was increased about 10% by Ni wires addition, electron beam welded 9%Ni steels weld metal had sufficient impact energy necessary for a LNG storage tank.

  • PDF

A study of the Electron Beam Irradiator for Core-loss reduction of Grain-oriented silicon Steel

  • Kim Min;Yoon Jeong-Phil;Lee Gi-Je;Cha In-Su;Cho Sung-Oh;Lee Byeong-Cheol;Jeong Young-Uk;Yoo Jae-Gwon;Lee Jong-Min
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.93-97
    • /
    • 2001
  • A new compact, low-energy electron beam irradiator has been developed. The core-loss of silicon steels can be reduced by magnetic-domain refinement method. The irradiator was developed for the application of core-loss reduction using the method. The beam energy of the irradiator can be varied from 35 to 80 keV and the maximum current is 3mA. The irradiation area is designed to be $30\times30mm2$ now and will be upgraded to $30\times150mm2$ using a scanning magnet and scanning cone. The electron beam generated from 3 mm diameter LaB6 is extracted to the air for the irradiation of the silicon steels in the air. A special irradiation port was developed for this low-energy irradiator. A havar foil with $4.08{\mu}m$ thickness were used for the window and a cold air-cooling system keeps the foil structure by removing heat at the window. The irradiator system and its operation characteristics will be discussed.

  • PDF

PAN 전구체 섬유의 안정화시 전자선 전류의 영향 (Effect of Electron Beam Currents on Stabilization of Polyacrlonitrile Precursor Fiber)

  • 신혜경;전준표;김현빈;강필현
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.41-46
    • /
    • 2011
  • Polyacrylonitrile (PAN) fibers are the most widely used precursor of the materials for carbon fibers. The conventional process of carbon fibers from PAN precursor fiber includes two step; stabilization at low temperature and carbonization at high temperature. Compared to thermal stabilization, the stabilization process by electron beam (E-beam) irradiation is a advanced and brief method. However, a stabilization by E-beam irradiation was required a high dose (over 5,000 kGy) and spend over 1.5 hr (1.14 MeV, 1 mA). In the present work the main goal is exploring a quick stabilization process by cotrolling E-beam currents. The effect of various E-beam currents on stabilization of PAN precursor fiber was studied by gel fraction test, thermo gravimertic analysis (TGA), differential scanning calorimetry (DSC), tensile strength, and scanning electron microscopy (SEM) images.

고에너지 전자선 진자조사에 의한 선량분포 (The Dose Distribution of Arc therapy for High Energy Electron)

  • 추성실;김귀언;서창옥;박창윤
    • Radiation Oncology Journal
    • /
    • 제1권1호
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

Dissociation of Thymine by Low-Energy Electrons

  • Cho, Hyuck;Noh, Hyung-Ah
    • Journal of Radiation Protection and Research
    • /
    • 제45권1호
    • /
    • pp.11-15
    • /
    • 2020
  • Background: There have been various studies to investigate the mechanisms of DNA damage from low-energy electrons. To understand the mechanism of these strand breaks, it is necessary to investigate the dissociation mechanism of the DNA constituents, that is, bases, sugars, and phosphates. Materials and Methods: We studied the dissociation of thymine base upon interaction with low-energy electrons. For this experiment, thymine powder was pressed onto the indium base and irradiated by 5 eV electrons. Results and Discussion: Non-irradiated and irradiated thymine samples were compared and analyzed using the X-ray photoelectron spectroscopic technique to analyze the dissociation patterns of the molecular bonds after low-energy electron irradiation of thymine. Conclusion: With 5 eV electron irradiation, C-C and N-C = O bonds are the primary dissociations that occur in thymine molecules.