• 제목/요약/키워드: Low-Cost and Environmental process

검색결과 176건 처리시간 0.023초

Application of surface modified sericite to remove anionic dye from an aqueous solution

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.312-319
    • /
    • 2017
  • The treatment of dyeing wastewater is not easy because dyes are mainly aromatic, heterocyclic compounds. The most effective technologies and methods to treat dyeing wastewater are costly and involve materials that are difficult to regenerate after use. Therefore, it is necessary to develop cost-effective, eco-friendly technologies to treat dyeing wastewater. The aim of this study was to investigate the removal of sulfur blue 11 (CI 53235) anionic dye using methyl esterified sericite (ME-sericite) adsorbents in an aqueous solution. The results are discussed in terms of the ME-sericite particle size, temperature, pH value and initial sorption rate according to the initial sulfur blue concentration. In addition, we analyzed the adsorption kinetics using a Pseudo-second-order model with the desorption and reusability. The methyl esterification caused a considerable increase in the specific surface area from 4.45 to $17.62m^2/g$. The ME-sericite adsorbents successfully removed > 98% of the sulfur dye in the aqueous solution. For the adsorption of 1 mg of sulfur dye, approximately 4.6 to 6.6 g/L ME-sericite were required. The desorption process was carried out by mixing a NaOH eluent to desorb 90.56% of the sulfur dye with 2 h of contact time. Thus, the ME-sericite is a promising adsorbent to treat dyeing wastewater due to its low dose requirement, high removal efficiency and inexpensive material.

하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발 (Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane)

  • 김동하
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

Na/NiCl2 전지의 연구 개발 동향 (R&D Status of Na/NiCl2 Battery)

  • 김현수;이상민
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.124-134
    • /
    • 2012
  • 최근 화석에너지 위기와 지구환경문제 등으로 신재생 에너지에 대한 관심이 높아지고 있으며, 여기에서 발전되는 전력을 저장할 수 있는 에너지저장장치의 수요가 증가하고 있다. Na/$NiCl_2$ 전지는 에너지효율이 높고, 환경친화적이며, 저가 등 우수한 장점들로 인하여 전력 저장용뿐만 아니라 전기자동차에도 응용 가능하다. 그러나, 본격적인 상용화를 위해서는 재료 및 부품, 셀 설계 및 제조 분야에서 개선이 필요한 부분이 많이 남아 있다. 본 논문에서는 Na/$NiCl_2$ 전지의 구조, 전기화학, 핵심 재료, 셀 설계 및 제작, 응용분야에 대하여 현재까지의 개발 동향에 대하여 서술하고자 한다.

원통기어의 다단면 치형 측정평가 (The Evaluation of Cylindrical Gear Measurement on Teeth Roots and Bottom Profiles in Different Sections)

  • 문성민;강재화;키도히로미쯔;구로가와슈헤이;류성기
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.46-49
    • /
    • 2012
  • Gears are reliable and efficient power transmission elements. They have been widely used in all kinds of machinery. Nowadays, resource conservation energy conservation environmental improvements from the request of the compact, light weight, high efficiency, low cost Higher efficiency is required. Tooth root and bottom profiles of cylindrical gears affect bending fatigue life, but they are hard to measure with conventional gear measuring machine(GMM), because GMM is normally customized to measure only gear working flanks. The authors try to develop a new type of GMM by installing an extra 3D scanning probe and control software to measure tooth root and bottom profiles. First, in order to measure in various directions, a 3D scanning probe has been attached to the GMM developed. Next, calibration algorithm has been developed. Deviations of the calibration results are measured and it is found that systematic error must be caused by heat from driving motors. A new alternative GMM with driving motors generating less heat was designed and two GMMs are compared. Finally, 3 Dimension measurement of tooth root and bottom profiles of cylindrical gears is described.

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.119-133
    • /
    • 2015
  • Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

습식 펄프몰드 생산공정의 탈수성 향상을 위한 연구 (Improvement of Drainage at Wet Pulp Mold Process)

  • 성용주;류정용;김형진;김태근;송봉근
    • 펄프종이기술
    • /
    • 제36권3호
    • /
    • pp.52-59
    • /
    • 2004
  • The greater Increase of the demand for environmental friendly materials especially for packaging industry leads to the larger interest in the reusable and recycable materials such as pulp mold. Although the pulp mold has great characteristics for packaging, some deficiency compared with other packaging material like EPS(Expandable Polystyrene) need to be overcome, for example, the relative higher cost. In this report, since the water drainage rate at the forming zone of a wet pulp mold process could have a great influence on the economical efficiency not only by increasing machine speed but also reducing the drying energy, the optimum ways for increasing drainage were investigated The mechanism of vacuum drainage In pulp mold forming was successfully evaluated by using RDA(Retention and Darinage Analyzer). Since the conditions of stock were greatly affected by the pulping time of low consistency pulper, the optimum pupling time was investigated with considerations of all stock preparation processes. The change of stock temperature and the addition of polyelectrolyte could improve the vacuum drainage rate. It was founded that the wire mesh types of mold former had a little influence on the retention because of the relatively mild vacuum drainage. However, the bigger size of dewatering hole showed better drainage rate and could reduce the plugging and con lamination of mold.

환경영향평가를 위한 VR기법으로 현실감을 고려한 도로설계 (The Environmental Impact Assessment of at Road Design in the Light of the Sense for the Real from the Virtual Reality)

  • 최현
    • 한국정보통신학회논문지
    • /
    • 제10권10호
    • /
    • pp.1842-1847
    • /
    • 2006
  • 본 연구에서는 환경 영향평가를 위한 도로설계단계에서부터 가상현실기 법으로 현실감을 고려한 도로설계기 법에 관한 연구로 3차원 모델의 구축과 시뮬레이션을 통한 가시 화 방법을 제시하였다. 제작된 3차원 모델은 도로공사 후의 모습을 시각적으로 극대화 시켜서 효율적으로 보여주는 수단이 될 것이다. 수치지도와 항공사진으로 생성된 다면체 모델을 구성하는 중요 구조물을 실제질감을 매핑하여 작업하였으므로 사실감을 더욱 높일 수 있었다. 본 연구를 기반으로 도로 노선으로 인한 장기간의 소모적인 협의기간을 단축하고 현행 환경 영향평가에서는 사후적인 측면에서 구체적이고 다양한 저감대책을 심도 있게 다루어 보다 현실적으로 발전한 경관을 고려한 도로가 건설될 수 있도록 해야 할 것이다.

지속가능 물류를 위한 TP-SD 방법론 기반의 복합운송체계 시뮬레이션 모델 개발 (Development of TP-SD Methodology-based Simulation Models to Improve Multimodal Transport Systems for Sustainable Logistics)

  • 정재운;김현수;최형림;홍순구
    • 한국시스템다이내믹스연구
    • /
    • 제11권2호
    • /
    • pp.45-75
    • /
    • 2010
  • Today, the logistics industry has played a critical role in national economy activities. The low cost and high efficiency of the logistics industry are meaningful in the improvement of national competitiveness and the logistics industry. However, efficiency of logistics is lower than that of the United States and Japan since most quantities are processed in road transportation in Korea. With regard to this, existing studies expected a saving of social and environmental costs due to a decrease of road transportation as well as improvement of logistics productivity due to bulk transportation through activation of rail and costal transport. For the expectation, the existing multimodal transport systems should be improved first. Therefore it aimed to develop scenario-based simulation models of multimodal transport systems for decision makers in charge of improvement in the logistics area. For model development, this study utilized Thinking Process and System Dynamics(TP-SD) methodology.

  • PDF

Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila

  • Patel, Sanjay K.S.;Mardina, Primata;Kim, Sang-Yong;Lee, Jung-Kul;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.717-724
    • /
    • 2016
  • Methane (CH4) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH4 can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH4; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30℃, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl2 as a methanol dehydrogenase inhibitor, 50% CH4 concentration, 24 h of incubation, and 9 mg of dry cell mass ml-1 inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH4.

수소스테이션용 유압 압축기 개발 (Development of Hydraulic Compressor for Hydrogen Station)

  • 조성민;노경길;염지웅;이승국;류성기
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.158-163
    • /
    • 2018
  • Major producers have already built compressors since World War I and have been monopolizing all domestic and overseas markets based on the accumulated technology, and the dependency of the manufacturers over the entire industry is deepening. Therefore, it is expected that the technological gap with developed countries will be larger without development of the related technology. Therefore, it is necessary to develop a unique technology for a new type of high efficiency compression system. In this study, we present localization of Hydraulic Compressor which can meet the technical trends such as cost reduction, efficiency improvement, environmental friendliness, wide operating range, low capacity / high capacity compatibility, size reduction, easy operation and easy maintenance.