• Title/Summary/Keyword: Low temperature applications

Search Result 875, Processing Time 0.026 seconds

Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes

  • Hendcrson W.A.;Shin J.H.;Alessandrini F.;Passcrini S.
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.153-168
    • /
    • 2003
  • Polymer electrolytes - solid polymeric membranes with dissolved salts - are being intensively studied for use in all-solid-state lithium-metal-polymer consumer electronic device. The low ionic conductivity at room temperature of existing polymer electrolytes, however, has seriously hindered the development of such batteries for many applications. The incorporation of salts molten at room temperature (room temperature ionic liquids or RTILs) into polymer electrolytes may be the necessary solution to overcoming the inherent ionic conductivity limitations of 'dry' polymer electrolytes.

  • PDF

Feasibility Study of IEEE 802.15.4 LR-WPAN to the Real-time Voice Application (IEEE 802.15.4 LR-WPAN의 실시간 음성 데이터 응용에 대한 적용 가능성 연구)

  • Hur, Yun-Kang;Kim, You-Jin;Huh, Jae-Doo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2007
  • Wireless sensor networking technology is one of the basic infrastructures for ubiquitous environment. It enables us to gather various sensory data such as temperature, humidity, gas leakage, and speed from the remote sensor devices. To support these networking functions, IEEE WPAN working group makes standards for PHY and MAC, while ZigBee Alliance defines the standards for the network, security, and applications. The low-rate WPAN was emerged to have the characteristics of network resilience, low cost, and low power consumption. It has a broad range of applications including, but not limit to industrial control and monitoring, home automation, disaster forecast and monitoring, health care. In order to provide more intelligent and robust services, users want voice-based solutions to accommodate to low-rate WPAN. In this paper, we have evaluated voice quality of an IEEE 802.15.4 standard compliant voice node. Specifically, it includes the design of a voice node and experiments based on the prediction of voice quality using the E-model suggested by ITU-T G.107, and the network communication mechanisms considering beacon-enabled and nonbeacon-enabled networks for real-time voice communications.

  • PDF

A study of crystallization of a-Si:H using a-Si:H/Cd interface layer (A-Si:H/Cd 계면층을 이용한 a-Si:H의 결정화 연구)

  • 김도영;최유신;임동건;김홍우;이수홍;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.529-532
    • /
    • 1997
  • We studied the crystallization of a-Si:H thin film. Multi-crystallized Si films are preferred in many applications such as FPD, solar cells, RAM, and integrated circuits. Because most of these applications require a low temperature process, we investigated a crystallization of a-Si:H using a Cd layer. A metal Cd shows an eutectic point at a temperature of 321$^{\circ}C$. This paper present Cd layer assisted crystallization of a-Si:H film for the various grain growth Parameters such as anneal temperature, Cd layer thickness, and anneal time

  • PDF

Effect of Ultrasonic Microdroplet Generation in the Low-Temperature Plasma Ionization-Mass Spectrometry

  • Lee, Hyoung Jun;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.10 no.4
    • /
    • pp.103-107
    • /
    • 2019
  • Low-temperature plasma (LTP) ionization is one of the ambient ionization methods typically used in mass spectrometry (MS) for fast screening of chemicals with minimal or no sample preparation. In spite of various advantages of LTP ionization method, including simple instrumentation and in-situ analysis, more general applications of the method are limited due to poor desorption of analytes with low volatilities and low ionization efficiencies in the negative ion mode. In order to overcome these limitations, an ultrasonic vibrator of a commercial hand-held humidifier was interfaced with an LTP ionization source, which generated microdroplets from sample solutions and assisted with LTP ionization. Ionization behaviors of various chemicals in microdroplet-assisted LTP (MA LTP) were tested and compared with typical LTP ionization from dried samples applied on a surface. MA LTP efficiently ionized small organic, amino, and fatty acids with low volatilities and high polarities, which were hardly ionized using the standard LTP method. Facile interaction of LTP with ultrafine droplets generated by ultrasonic resonator allows efficient ionization of relatively non-volatile and polar analytes both in the positive and negative ion modes.

Improvement of Reliability of Low-melting Temperature Sn-Bi Solder (저융점 Sn-Bi 솔더의 신뢰성 개선 연구)

  • Jeong, Min-Seong;Kim, Hyeon-Tae;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder, and the excessive heat applied to the entire substrate and components affect the performance and reliability of the device. These problems can cause warpage and deterioration of long-term reliability of the electronic packages. In order to improve these issues, many studies on low-melting temperature solders, which is capable of performing a low-temperature process, have been actively conducted. Among the various low-melting temperature solders, such as Sn-Bi and Sn-In, Sn-58Bi solder is attracting attention as a promising low-temperature solder because of its advantages such as high yield strength, moderate mechanical property, and low cost. However, due to the high brittleness of Bi, improvement of the Sn-Bi solder is needed. In this review paper, recent research trends to improve the mechanical properties of Sn-Bi solder by adding trace elements or particles were introduced and compared.

Fabrication of Micromachined Ceramic Thin-Film Pressure Sensors for High Overpressure Tolerance

  • Chung, Gwiy-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.59-63
    • /
    • 2002
  • This paper reports on the fabrication process and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain-gauges for harsh environment applications. The Ta-N thin-film strain-gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragms with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.21 ~ 1.097 mV/V.kgf/$\textrm{cm}^2$ in temperature ranges of 25~ $200^{\circ}C$ and a maximum non-linearity is 0.43 %FS.

  • PDF

Fabrication of a Micromachined Metal Thin-film Type Pressure Sensor for High Overpressure Tolerance and Its Characteristics (과부하 방지용 마이크로머시닝 금속 박막형 압력센서의 제작과 그 특성)

  • Kim, Jae-Min;Lim, Byoung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.192-196
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a metal thin-film pressure sensor based on Cr strain-gauges for harsh environment applications. The Cr thin-film strain-gauges are sputter-deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single-crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Cr thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097~1.21 $mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Low-temperature Synthesis of Graphene-CdLa2S4 Nanocomposite as Efficient Visible-light-active Photocatalysts

  • Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • We report the facile synthesis of graphene-$CdLa_2S_4$ composite through a facile solvothermal method at low temperature. The as-prepared products were characterized by X-ray diffraction (XRD) and by Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and BET analysis, revealing the uniform covering of the graphene nanosheet with $CdLa_2S_4$ nanocrystals. The as-prepared samples show a higher efficiency for the photocatalytic degradation of typical MB dye compared with P25 and $CdLa_2S_4$ bulk nanoparticles. The enhancement of visible-light-responsive photocatalytic properties by decolorization of Rh.B dye may be attributed to the following causes. Firstly, graphene nanosheet is capable of accepting, transporting and storing electrons, and thus retarding or hindering the recombination of the electrons with the holes remaining on the excited $CdLa_2S_4$ nanoparticles. Secondly, graphene nanosheet can increase the adsorption of pollutants. The final cause is that their extended light absorption range. This work not only offers a simple way to synthesize graphene-based composites via a one-step process at low temperature but also a path to obtain efficient functional materials for environmental purification and other applications.

High Quality Ultrathin Gate Oxides Grown by Low-Temperature Radical Induced Oxidation for High Performance SiGe Heterostructure CMOS Applications (저온 래디컬 산화법에 의한 고품질 초박막 게이트 산화막의 성장과 이를 이용한 고성능 실리콘-게르마늄 이종구조 CMOS의 제작)

  • 송영주;김상훈;이내응;강진영;심규환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.765-770
    • /
    • 2003
  • We have developed a low-temperature, and low-pressure radical induced oxidation (RIO) technology, so that high-quality ultrathin silicon dioxide layers have been effectively produced with a high reproducibility, and successfully employed to realize high performace SiGe heterostructure complementary MOSFETs (HCMOS) lot the first time. The obtained oxide layer showed comparable leakage and breakdown properties to conventional furnace gate oxides, and no hysteresis was observed during high-frequency capacitance-voltage characterization. Strained SiGe HCMOS transistors with a 2.5 nm-thick gate oxide layer grown by this method exhibited excellent device properties. These suggest that the present technique is particularly suitable for HCMOS devices requiring a fast and high-precision gate oxidation process with a low thermal budget.

Effect of treatment temperature on mechanical properties of silk textiles made with silk/polyurethane core-spun yarn

  • Bae, Yeon Su;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.108-112
    • /
    • 2016
  • Silk has been used extensively in textile applications because of its good luster and feel. However, the low elongation and elastic recovery of silk has limited its use in a wider variety of textile applications. In this study, silk textile samples were made with a highly twisted silk/polyurethane core-spun yarn. They were immersed in water and dried at different temperatures, and the effect of treatment temperature on the mechanical properties of the silk textile was examined. It was found that the water temperature strongly affected the morphology and mechanical properties of the silk textile, whereas the drying temperature did not. As the water temperature was increased, the weft silk yarn became tangled and the interval between warp yarns decreased, resulting in shrinkage of the silk textile. When the silk textile was immersed in water at high temperature (i.e., $100^{\circ}C$), the elongation of the textile increased eight-fold as compared to an untreated silk textile. The maximum elastic recovery ratio of the silk textile was 96.7%.