Browse > Article
http://dx.doi.org/10.5478/MSL.2019.10.4.103

Effect of Ultrasonic Microdroplet Generation in the Low-Temperature Plasma Ionization-Mass Spectrometry  

Lee, Hyoung Jun (Korea Research Institute of Standards and Science (KRISS))
Yim, Yong-Hyeon (Korea Research Institute of Standards and Science (KRISS))
Publication Information
Mass Spectrometry Letters / v.10, no.4, 2019 , pp. 103-107 More about this Journal
Abstract
Low-temperature plasma (LTP) ionization is one of the ambient ionization methods typically used in mass spectrometry (MS) for fast screening of chemicals with minimal or no sample preparation. In spite of various advantages of LTP ionization method, including simple instrumentation and in-situ analysis, more general applications of the method are limited due to poor desorption of analytes with low volatilities and low ionization efficiencies in the negative ion mode. In order to overcome these limitations, an ultrasonic vibrator of a commercial hand-held humidifier was interfaced with an LTP ionization source, which generated microdroplets from sample solutions and assisted with LTP ionization. Ionization behaviors of various chemicals in microdroplet-assisted LTP (MA LTP) were tested and compared with typical LTP ionization from dried samples applied on a surface. MA LTP efficiently ionized small organic, amino, and fatty acids with low volatilities and high polarities, which were hardly ionized using the standard LTP method. Facile interaction of LTP with ultrafine droplets generated by ultrasonic resonator allows efficient ionization of relatively non-volatile and polar analytes both in the positive and negative ion modes.
Keywords
ultrasonic microdroplet generation; low-temperature plasma ionization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X. R.; Cooks, R. G. Anal. Chem. 2008, 80, 9097.   DOI
2 Venter, A. R.; Douglass, K. A.; Shelley, J. T.; Hasman, Jr. G.; Honarvar, E; Anal. Chem. 2014, 86, 233.   DOI
3 Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471.   DOI
4 Peacock, P. M.; Zhang, W.-J.; Trimpin, S. Anal. Chem. 2017, 89, 372.   DOI
5 Salter, T. L.; Bunch, J.; Gilmore, I. S.; Anal. Chem. 2014, 86, 9264.   DOI
6 Lee, H. J.; Oh, J.-S.; Heo, S. W.; Moon, J. H.; Kim, J.-H.; Park, S. K.; Park, B. C.; Kweon, G. R.; Yim, Y.-H. Mass Spectrom. Lett. 2015, 6, 71.   DOI
7 Lee, H. J.; Kweon, G. R.; Yim, Y.-H. Mass Spectrom. Lett. 2017, 8, 44.   DOI
8 https://pubchem.ncbi.nlm.nih.gov/
9 Cody, R. B.; Laramee, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297.   DOI