• Title/Summary/Keyword: Low noise amplifier

Search Result 535, Processing Time 0.035 seconds

Design of 14-14.5GHz Band Low Noise GaAsMESFET MIC Amplifier (14-14.5 GHz 대역 저잡음 GaAsMESFET MIC 증폭기 설계)

  • 이문수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.360-368
    • /
    • 1988
  • A 14 to 14.5 GHz low noise MIC amplifier is designed on the $Al_2$$O_3$ substrate. The amplifier which uses a GaAsMESFET developed at COMSAT Laboratories has been designed and optivized to have gain greater than 7dB and noise figure less than 2dB using Super-Compact program. Experimental results show that the gain of the amplifier is 7 to 7.7 dB, while noise figure is 3.8 to 4.3dB through the desired band.

  • PDF

Ka-Band Variable-Gain CMOS Low Noise Amplifier for Satellite Communication System (위성 통신 시스템을 위한 Ka-band 이득제어 CMOS 저잡음 증폭기)

  • Im, Hyemin;Jung, Hayeon;Lee, Jaeyong;Park, Sungkyu;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.959-965
    • /
    • 2019
  • In this paper, we design a low noise amplifier to support ka-band satellite communication systems using 65-nm RFCMOS process. The proposed low noise amplifier is designed with high-gain mode and low-gain mode, and is designed to control the gain according to the magnitude of the input signal. In order to reduce the power consumption, the supply voltage of the entire circuit is limited to 1 V or less. We proposed the gain control circuit that consists of the inverter structure. The 3D EM simulator is used to reduce the size of the circuit. The size of the designed amplifier including pad is $0.33mm^2$. The fabricated amplifier has a -7 dB gain control range in 3 dB bandwidth and the reflection coefficient is less than -6 dB in high gain mode and less than -15 dB in low gain mode.

The Design of High Cain Channel Amplifier for Terrestial Repeater of Digital Satellite Broadcasting (디지털 위성방송 지상 리피터용 고 이득 채널 증폭기 설계)

  • 이강훈;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.485-491
    • /
    • 2003
  • In this paper, We designed the multi-stage amplifier having high gain/low noise characteristics for terrestial repeater of direct digital satellite broadcasting system. In the design the amplifier, we optimized the parameters to have the stable operation between gain, noise figure and stability. The first stage of amplifier can be specified low noise impedance matching, 2nd stage to 5th stage show constant gain and stable operation and final stage of amplifier shows high gain impedance matching. As a result of experiment at the frequency of digital satellite terrestial, show 68dB gain under 2,4dB noise figure and 63dB dynamic range in the 11.7GHz-12.7GHz frequency range, it is a good agreement of communication channel amplifier requirements for satellite terrestial repeater.

The development of IF amplifier having low noise and wide AGC range (저잡음 및 넓은 자동 이득 제어 영역을 갖는 IF 증폭기의 설계)

  • 이흥배;엄두찬;김용석;정연철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.73-81
    • /
    • 1994
  • It is AGC(Automatic Gain Control) amplifier to decide characteristics of IF(Intermediate Frequency) processing IC. When demodulated IF signal by PLL type demodulator, the amplitude of input singla should be maintained at a certain amplitude. The AGC amplifier is an important factor to achieve this condition. The AGC amplifier needs the wide dynamic range, the wide AGC range and better noise characteristics. We designed the AGC amplifier to satisfy these characteristics.

  • PDF

Programmable RF Built-ln Self-Test Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 프로그램 가능한 고주파 Built-In Self-Test회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1004-1007
    • /
    • 2005
  • This paper presents a programmable RF BIST (Built-in Self-Test) circuit for low noise amplifiers. We have developed a new on-chip RF BIST circuit that measures RF parameters of low noise amplifier (LNA) using only DC measurements. The BIST circuit contains test amplifier with programmable capacitor banks and RF peak detectors. The test circuit utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance and gain using the mathematical equations. Our on-chip BIST can be self programmed for 1.8GHz, 2.4GHz and 5.25GHz LNA for GSM, Bluetooth and IEEE802.11g standards.

  • PDF

A study on the Design of Gain Variable Low Noise amplifier using PCSNIM techniques for Zigbee System (Zigbee시스템에 적용 하기위해 PCSNIM 기법을 사용한 가변 이득 저잡음 증폭기 설계 연구)

  • Choi, Hyuk-Jae;Choi, Jin-Kyu;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.121-124
    • /
    • 2009
  • In this paper, the techniques and design focus of flexible gain coltrol of LAN(Low Noise Amplifier) using the TSMC 0.18um CMOS process. The design frequency set up a standard on 2.4GHz that is used in Zigbee system. The design concepts a basic Cascode LNA techniques and a swiching circuit consisted of 4 NMOS of load resistance, which convert the output impedenceby tuning on or off. The result show the gain change by NMOS operated swich. The simulation result is that Gain is 14.07dB-16.79dB and NF(Noise Figure) is 1.06dB-1.09dB.

  • PDF

High-Gain Wideband CMOS Low Noise Amplifier with Two-Stage Cascode and Simplified Chebyshev Filter

  • Kim, Sung-Soo;Lee, Young-Sop;Yun, Tae-Yeoul
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.670-672
    • /
    • 2007
  • An ultra-wideband low-noise amplifier is proposed with operation up to 8.2 GHz. The amplifier is fabricated with a 0.18-${\mu}m$ CMOS process and adopts a two-stage cascode architecture and a simplified Chebyshev filter for high gain, wide band, input-impedance matching, and low noise. The gain of 19.2 dB and minimum noise figure of 3.3 dB are measured over 3.4 to 8.2 GHz while consuming 17.3 mW of power. The Proposed UWB LNA achieves a measured power-gain bandwidth product of 399.4 GHz.

  • PDF

A Study on the Design of Microwave Low Noise Amplifier Using GaAs FET (GaAs FET를 이용한 저잡음증폭기 설계에 관한 연구)

  • 전광일;주창복;박정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.101-107
    • /
    • 1986
  • Analysis and design procedure for the low noise amplifier design are presented. A Microwave low noise amplifier is designed and fabricated using packaged GaAs FET at the center frequency of 12GHa. The experimental results with respect to the noise figure and power gain are quite agreeable with the design specifications except that the input and output VSWR are slightly higher than the desingned.

  • PDF

Noise analysis of cascode LNA with 65nm CMOS technology (65nm CMOS 기술에서의 cascode기반 LNA 잡음지수 분석)

  • Jung, Youngho;Koo, Minsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.678-681
    • /
    • 2020
  • In this paper, we analyzed the noise figure of cascode low noise amplifier (LNA) based on the measured data of 65nm CMOS devices. By using the channel thermal noise model of transistors, we expanded noise figure equation and divided the equation into three parts to see its contributions to noise figure. We also varied design parameters such as bias point, transistor gate width, and operating frequency. Our results show that different noise sources dominate at the different operating frequencies. One can easily find the noise transition frequency with device models in ahead of the practical design. Therefore, this research provides a low noise design approach for different operating frequencies.

A Study on the Fabrication of the Low Noise Amplifier Using Resistive Decoupling circuit and Series feedback Method (저항결합 회로와 직렬 피드백 기법을 이용한 저잡음 증폭기의 구현에 관한 연구)

  • 유치환;전중성;황재현;김하근;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.190-195
    • /
    • 2000
  • This paper presents the fabrication of the LNA which is operating at 2.13∼2.16 GHz for IMT-2000 lot-end receiver using series feedback and resistive decoupling circuit. Series feedback added to the source lead of a transistor keep the low noise characteristics and drop the input reflection coefficient of amplifier simultaneously. Also, it increases the stability of the LNA. Resistive decoupling circuit is suitable for input stage matching because a signal at low frequency is dissipated by a resistor in the matching network The amplifier consist of GaAs FET ATF-10136 for low noise stage and VNA-25 which is internally matched MMIC for high gain stage. The amplifier is fabricated with both the RF circuits and self bias circuit on the Teflon substrate with 3.5 permittivity. The measured results of the LNA which is fabricated using above design technique are presented more than 30 dB in gain P$\_$ldB/ 17 dB and less than 0.7 dB in noise figure, 1.5 in input$.$output SWR(Standing Wave Ratio).

  • PDF