• Title/Summary/Keyword: Low load operation

Search Result 477, Processing Time 0.027 seconds

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Reconfigurable CMOS low-noise amplifier for multi-mode/multi-band wireless receiver (다중모드/다중대역 무선통신 수신기를 위한 재구성 가능 CMOS 저잡음 증폭기)

  • Hwang, Bo-Hyun;Jung, Jae-Hoon;Kim, Shin-Nyoung;Jeong, Chan-Young;Lee, Mi-Young;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.111-117
    • /
    • 2006
  • Reconfigurable CMOS low-noise amplifier (LAN) has been developed for multi-mode/multi-band wireless receiver. By employing common-gate input stage, the performance can be optimized for multiple operation bands by simply controlling the output load impedance. Although the conventional common-gate LAN has larger than 3dB noise figure (NF), the newly developed negative feedback scheme enables the common-gate input LNA to have less than 2dB NF. To have optimum linearity performance of wireless receiver, the gain of the LNA can be controlled. The LNA implemented in a 0.13mm CMOS technology shows $19{\sim}20dB$ voltage gain, $1.7{\sim}2.0dB$ NF, -2dBm iIP3 at $1.8{\sim}2.5GHz$ frequency range. The LNA dissipates 7mW from a 1.2V supply voltage.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines (함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향)

  • Son, Min-Soo;Choi, Jae-Sung;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.180-184
    • /
    • 2016
  • Legislative and regulatory actions regarding the exhaust gas from ships are being strengthened by both international organizations and national governments, to protect human health and the environment. Exhaust gas traps are excluded from exhaust gas regulation applications, but, recently, the United States, Britain, and other developed countries have examined a variety of ways to improve the system, including the introduction of electric propulsion systems to prevent air pollution generated by naval ships. This study investigates a large number of smoke problems of naval diesel engines to verify the effect of improving the nozzle characteristics. An exhaust gas emission measurement method to determine the quality of pollutant exhaust gas generated during low-load operation is proposed through the research methodology of the smoke problem. It was confirmed that the emissions value is improved by decreasing the nozzle hole diameter and increasing the injection pressure. At the same time, the flow rate decrease equation and setting up a test memo based on the nozzle diameter confirmed that the fuel consumption, to which the nozzle diameter in the flow path is related, is reduced.

Sensorless speed control of permanent magnet synchronous motor using square-root extended kalman filter (제곱근 확장 칼만 필터에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.217-222
    • /
    • 2016
  • This study investigates the design, analysis, and implementation of the square-root extended Kalman filter by using an algorithm derived by combining the Potter or Carlson algorithm with the modified Gram-Schmidt algorithm, for sensorless speed control of a permanent-magnet synchronous motor. The sensitivity of the Kalman filter to round-off errors is a well-known problem. A possible way to address this limitation is by combining the square-root concept and Kalman filter that can improve the numerical performance and solve instability-related problems such as divergence. This paper presents the design and analysis of the implementation of such a square-root extended Kalman filter. To demonstrate the performance of the proposed filter, experimental results under several operating conditions, such as high and low speeds, reversal rotation, detuned parameters and load test, have been analyzed. Further, code sizes and operation times have been compared. Experimental results establish the performance of the proposed square-root extended Kalman filter-based estimation technique for sensorless speed control of a permanent-magnet synchronous motor.

Improving the Utilization and Efficiency of B2B Online Store using DEA (DEA를 이용한 B2B 온라인 쇼핑몰 상품관리 효율성 증대 방안)

  • Gu, Seung-Hwan;Park, Hyun-Ki;Jang, Seong Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4237-4245
    • /
    • 2014
  • In this study, products in a B2B online shopping mall were classified efficiently using DEA, and an operational process is presented. The results using the data of M company were used to calculate the workload according to the category. The work load of managing the product using the DEA has been distributed evenly. In addition, the classification of A is composed of the highest net income, and it was intended to be managed centrally by the company. Business classifications C and B, which were made of a low severity workload, were reduced. Therefore, efficient operation is possible when applied to an actual business.

Estimation of Contribution Ratio and Community Sewerage Treatment Efficiency by using Advanced Sewage Treatment in the Basin of Hongcheon-river (홍천강 유역의 하수고도처리를 적용한 마을하수처리 효율 및 기여율 평가)

  • Park, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3570-3576
    • /
    • 2013
  • This paper calculated advanced sewage treatment efficiency and reduction pollution loads to estimation contribution ratio of for community sewerage in Hongcheon-gun County. The A2/O and SBR methods showed overall high treatment efficiency of 95% and 94% respectively, and SS was 80%. On the other hand, T-N and T-P showed relatively low processing efficiency of 56% and 60% respectively, but it was observed that SS showed high 96% in the MBR method. Next, by the result of yearly water change analysis on water quality of Hongcheon River which is the discharge river of community sewerage, it was observed that water quality was greatly deteriorated by COD, T-N and T-P. However, installation and operation of community sewerage showed high pollution load reduction in general water quality item by more than 80%, and in T-N and T-P by 58% and 68% respectively. It is expected that community sewerage will greatly contribute in water quality improvement of Hongcheon River.

A High-Voltage Compliant Neural Stimulation IC for Implant Devices Using Standard CMOS Process (체내 이식 기기용 표준 CMOS 고전압 신경 자극 집적 회로)

  • Abdi, Alfian;Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.58-65
    • /
    • 2015
  • This paper presents the design of an implantable stimulation IC intended for neural prosthetic devices using $0.18-{\mu}m$ standard CMOS technology. The proposed single-channel biphasic current stimulator prototype is designed to deliver up to 1 mA of current to the tissue-equivalent $10-k{\Omega}$ load using 12.8-V supply voltage. To utilize only low-voltage standard CMOS transistors in the design, transistor stacking with dynamic gate biasing technique is used for reliable operation at high-voltage. In addition, active charge balancing circuit is used to maintain zero net charge at the stimulation site over the complete stimulation cycle. The area of the total stimulator IC consisting of DAC, current stimulation output driver, level-shifters, digital logic, and active charge balancer is $0.13mm^2$ and is suitable to be applied for multi-channel neural prosthetic devices.

Performance Evaluation of Ball Media Filter in DABF applied to SWRO pretreatment process (SWRO 전처리 공정에 적용된 DABF 내 Ball Media Filter 성능 평가)

  • Choi, Seokho;Lee, Junghyun;Park, Sungju;Lee, Younggeun;Roh, Hyungkeun;Kim, Yongbeom
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2019
  • DABF(Dissolve Air Flotation with Ball Filter) is developed as the DAF with the addition of a fiber ball at the lower part of the DAF. The DABF with a capacity of 4,500 ㎥/h was constructed at Gijang SWRO plant in Busan. Since the ball filter has high filtration rate, the loading rate of DABF was designed from 20 to 42 ㎥/h/㎡. When one DABF basin is in the back washing mode, the loading rate of other two DABF basins is increased to 42 ㎥/h/㎡. Turbidity at the BF outlet in DABF is <2 NTU at turbidity of 5-10 NTU at the BF inlet. If there is no algae bloom and turbidity is low in raw seawater, only BF in DABF is operated and meets <2 NTU at the BF outlet. Even if BF is operated at high hydraulic loading rates, no significant differential pressure increases and reduction in the turbidity removal rate is minimal in a day. Thus, DABF is the pre-treatment technology that provides stable water quality even with BF onlyoperation without DAF operation. Compared with the DAF, DABF requires additional facilities such as valves, piping, and drainage systems for backwashing the BF. But in terms of footprint and operating costs, DABF has more advantages than DAF. With DABF application, the load of the downstream filtration equipment is decreased so that the capacity of the filtration equipment can be reduced. Also, if the downstream filtration equipment is to be maintained the same regardless of DABF, the operating cost of DABF is less than DAF.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF