• 제목/요약/키워드: Low friction coating

검색결과 122건 처리시간 0.023초

포토 리소그래피 공정을 이용한 DLC 마이크로 패턴 원통 금형 제작 (Fabrication of DLC Micro Pattern Roll Mold by Photolithography Process)

  • 하태규;김정완;이태동;윤수종;김태규
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.63-67
    • /
    • 2018
  • Recent mold industry uses many roll-to-roll processes that can produce high production speed and precision machining and automation process. In the circular cylinder mold, however, patterns of less than $10{\mu}m$ are difficult to manufacture and maintain. In this study, we fabricated a circular cylindrical mold with a DLC thin film which have high hardness, low coefficient of friction and high releasability by using lithography and lift-off process. The height, line width, and pitch of the fabricated DLC macro pattern are $3.1{\mu}m$, $9.1{\mu}m$ and $20.2{\mu}m$, respectively. The pattern size is finer than the current applied to the aluminum cylinder type, and this shows the possibility of practical use of DLC micro pattern roll mold.

Performance evaluation of plasma nitrided 316L stainless steel during long term high temperature sodium exposure

  • Akash Singh;R. Thirumurugesan;S. Krishnakumar;Revati Rani;S. Chandramouli;P. Parameswaran;R. Mythili
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1468-1475
    • /
    • 2023
  • Enhancement of wear resistance of components used in fast reactors is necessary for long service life of the components. Plasma nitriding is a promising surface modification technology to impart high hardness and improved wear resistance of various steel components. This study discusses the characterization of chrome nitrided SS316L casing ring used in secondary sodium pump of fast breeder reactor and its stability under long term sodium exposure. Microstructural and hardness analysis showed that stress relieved component could be chrome nitrided successfully to a thickness of about 100 ㎛. Assessment of in-sodium performance of the chrome nitrided casing ring subjected to long term exposure up to 5000h at 550℃, showed retention of chrome nitrided layer with a case depth almost similar to that before sodium exposure. A slight decrease in the hardness was observed due to prolonged high temperature sodium exposure. Tribological studies indicate very low coefficient of friction indicating the retention of good wear resistance of the coating even after long term sodium exposure.

TiN 나노 박막을 코팅한 AL7075-T7351 알루미늄 합금의 트라이볼로지 특성에 관한 연구 (A Study on the Tribological Characteristics of AL7075-T7351 Aluminum Alloy Coated with TiN Nano Thin Film)

  • 김광수;임성훈;김도현;박형준;허선철
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.743-750
    • /
    • 2023
  • Aluminum alloy is a material widely used in the aircraft industry. However, since it has relatively low hardness, strength and tribological properties, it is necessary to improve these properties. In this paper, a TiN thin film was coated on the surface of AL7075-T7351 using DC magnetron sputtering. The coating was performed by setting different deposition pressure, deposition time, and applied power. Then, the tribological properties of the thin film were investigated. As a result of the experiment, the hardness of the thin film was higher than that of the base material, and the specimen with the highest hardness had excellent friction coefficient, wear amount, and adhesive strength characteristics. Through this study, it was confirmed that the tribological characteristics of aluminum alloy can be improved by depositing thin films using DC magnetron sputtering.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

기상 자기조립박막 법을 이용한 나노임프린트용 점착방지막 형성 및 특성평가 (Deposition and Characterization of Antistiction Layer for Nanoimprint Lithography by VSAM (Vapor Self Assembly Monolayer))

  • 차남구;김규채;박진구;정준호;이응숙;윤능구
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.31-36
    • /
    • 2007
  • Nanoimprint lithography (NIL) is a new lithographic method that offers a sub-10nm feature size, high throughput, and low cost. One of the most serious problems of NIL is the stiction between mold and resist. The antistiction layer coating is very effective to prevent this stiction and ensure the successful NIL results. In this paper, an antistiction layer was deposited by VSAM (vapor self assembly monolayer) method on silicon samples with FOTS (perfluoroctyltrichlorosilane) as a precursor for making an antistiction layer. A specially designed LPCVD (low pressure chemical vapor deposition) was used for this experiment. All experiments were achieved after removing the humidity. First, the evaporation test of FOTS was performed for checking the evaporation temperature at low pressure. FOTS was evaporated at 5 Tow and $110^{\circ}C$. In order to evaluate the temperature effect on antistiction layer, chamber temperature was changed from 50 to $170^{\circ}C$ with 0.1ml of FOTS for 1 minute. Good hydrophobicity of all samples was shown at about $110^{\circ}$ of contact angle and under $20^{\circ}$ of hysteresis. The surface energies of all samples calculated by Lewis acid/base theory was shown to be about 15mN/m. The deposited thicknesses of all samples measured by ellipsometry were almost 1nm that was similar value of the calculated molecular length. The surface roughness of all samples was not changed after deposition but the friction force showed relatively high values and deviations deposited at under $110^{\circ}$. Also the white circles were founded in LFM images under $110^{\circ}$. High friction forces were guessed based on this irregular deposition. The optimized VSAM process for FOTS was achieved at $170^{\circ}C$, 5 Torr for 1 hour. The hot embossing process with 4 inch Si mold was successfully achieved after VSAM deposition.

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

박막증착시 티타늄 표면의 마손저항도와 세포독성에 관한 연구 (A STUDY ON THE RESISTANCE OF WEAR AND CYTOTOXICITY OF THE TITANIUM SURFACE AFTER FILM DEPOSITIONS)

  • 김형우;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제39권1호
    • /
    • pp.84-95
    • /
    • 2001
  • Titanium is widely used in dentistry for its low density, high strength, fatigue resistance, corrosion resistance, and biocompatibility. But it has a tendency of surface damage under circumstance of friction and impact for its low hardness of the surface. Coating is one of methods fir increasing surface hardness. Its effect is to improve surface physical characteristics without change of titanium. Diamond-like carbon and titanium nitride are known for its high hardness of the surface. So that this study was aimed at the wear test and the cytotoxicity test of the commercially pure titanium and Ti-6Al-4V alloy which were deposited by diamond-like carbon film or titanium nitride film to acertain improvement of the surface hardness and the biocompatibility. A disk (25mm diameter, 2mm thickness) was made of commercially pure titanium and Ti-6Al-4V alloy and these substrates were deposited by diamond-like carbon film or titanium nitride film. Diamond-like carbon film was deposited by the method of radiofrequency plasma assisted chemical vapor deposition and titanium nitride film was deposited by the method of reactive arc ion plating. Then these substrates were tested about wear characteristics by the pin-on-disk type wear tester in which ruby ball was used as a wear causer under the load of 32N, The fracture cycles were measured by rotating the substrates until their films were fractured. The wear volume was measured after 150 cycles and 3,000 cycles using surface profiler. The cytotoxicity test was peformed by the method of the MTT assay. The results were as follows : 1. In the results of the wear volume test, commercially pure titanium and titanium alloy which were coated by diamond-like carbon film or titanium nitride aim had higher resistance against wear than the substrates which were not coated by any films (P<0.05). 2. In the results of the fracture cycle test and the wear volume test, diamond-like carbon film had higher resistance against wear than titanium nitride film (P<0.05). 3. In both coatings of diamond-like carbon aim and titanium nitride film, Ti-6Al-4V alloy had higher resistance against wear than commercially pure titanium (P<0.05) 4. In the results of the cytotoxicity test, diamond-like carbon film and titanium nitride film had little cytotoxicity as like commercially pure titanium or Ti-6Al-4V alloy (P>0.05).

  • PDF

실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰 (A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test)

  • 김상권;이재훈;김성완
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

PECVD법에 의해 증착된 Ti-B-C코팅막 내의 보론함량과 증착온도에 따른 미세구조 및 기계적 물성의 변화 (The Effect of Boron Content and Deposition Temperature on the Microstructure and Mechanical Property of Ti-B-C Coating Prepared by Plasma-enhanced Chemical Vapor Deposition)

  • 옥정태;송풍근;김광호
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.106-111
    • /
    • 2005
  • Ternary Ti-B-C coatings were synthesized on WC-Co and Si wafers substrates by a PECVD technique using a gaseous mixture of $TiCl_4,\;BCl_3,\;CH_4,\;Ar,\;and\; H_2$. The effects of deposition variables such as substrate temperature, gas ratio, $R_x=[BCl_3/(CH_4+BCl_3)]$ on the microstructure and mechanical properties of Ti-B-C coatings were investigated. From our instrumental analyses, the synthesized Ti-B-C coatings was confirmed to be composites consisting of nanocrystallites TiC, quasi-amorphous TiB2, and amorphous carbon at low boron content, on the contrary, nanocrystallites $TiB_2$, quasi-amorphous TiC, and amorphous carbon at relatively high boron content. The microhardness of the Ti-B-C coatings increased from $\~23 GPa$ of TiC to $\~38 GPa$ of $Ti_{0.33}B_{0.55}C_{0.11}$ coatings with increasing the boron content. The $Ti_{0.33}B_{0.55}C_{0.11}$ coatings showed lower average friction coefficient of 0.45, in addition, it showed relatively better wear behavior compared to other binary coatings of $TiB_2$ and TiC. The microstruture and microhardness value of Ti-B-C coatings were largely depend on the deposition temperature.

초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구 (A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings)

  • 허성보;김왕렬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.