• Title/Summary/Keyword: Low Voltage DRAM

Search Result 39, Processing Time 0.025 seconds

Reviews and Proposals of Low-Voltage DRAM Circuit Design (저전압 DRAM 회로 설계 검토 및 제안)

  • Kim, Yeong-Hui;Kim, Gwang-Hyeon;Park, Hong-Jun;Wi, Jae-Gyeong;Choe, Jin-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.251-265
    • /
    • 2001
  • As the device scaling proceeds, the operating voltage(VDD) of giga-bit DRAMs is expected to be reduced to 1.5V or down, fir improving the device reliability and reducing the power dissipation. Therefore the low-voltage circuit design techniques are required to implement giga-bit DRAMs. In this work, state-of-art low-voltage DRAM circuit techniques are reviewed, and four kinds of low-voltage circuit design techniques are newly proposed for giga-bit DRAMs. Measurement results of test chips and SPICE simulation results are presented for the newly proposed circuit design techniques, which include a hierarchical negative-voltage word-line driver with reduced subthreshold leakage current, a two-phase VBB(Back-Bias Voltage) generator, a two-phase VPP(Boosted Voltage) generator and a bandgap reference voltage generator.

  • PDF

A study on the Design of a stable Substrate Bias Generator for Low power DRAM's (DRAM 의 저전력 구현을 위한 안정한 기판전압 발생기 설계에 관한 연구)

  • 곽승욱;성양현곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.703-706
    • /
    • 1998
  • This paper presents an efficient substrate-bias generator(SBG)for low-power, high-density DRAM's The proposed SBG can supply stable voltage with switching the supply voltage of driving circuit, and it can substitude the small capacitance for the large capacitance. The charge pumping circuit of the SBG suffere no VT loss and is to be applicable to low-voltage DRAM's. Also it can reduce the power consumption to make VBB because of it's high pumping efficiency. Using biasing voltage with positive temperature coefficient, VBB level detecting circuit can detect constant value of VBB against temperature variation. VBB level during VBB maintaining period varies 0.19% and the power dissipation during this period is 0.16mw. Charge pumping circuit can make VBB level up to -1.47V using VCC-1.5V, and do charge pumping operation one and half faster than the conventional ones. The temperature dependency of the VBB level detecting circuit is 0.34%. Therefore the proposed SBG is expected to supply a stable VBB with less power consumption when it is used in low power DRAM's.

  • PDF

A Study on the Design of the Voltage Down Converter for Low Power, High Speed DRAM (DRAM의 저전력, 고속화에 따른 VDC 설계에 관한 연구)

  • 주종두;곽승욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.707-710
    • /
    • 1998
  • This paper presents a new voltage down converter(VDC) for low power, high speed DRAM. This VDC Consists of RVG(Reference Voltage Generator) and Driver Circuit. And it is independent of temperature variation, and Supply Voltage. Using weak inversion region, this RVG dissipates low power. Internal Voltage Source of this VDC is stable in spite of high speed operation of memory array. This circuit is designed with a $0.65\mu\textrm{m}$ nwell CMOS technology. In HSPICE simulation results, Temperature dependency of this RVG is $20\muV/^{\circ}C,$ supply voltage dependency is $\pm0.17%,$ $VCC=3.3V\pm0.3V,$ and current dissipation is $5.22\muA.$ Internal voltage source bouncing of this VDC is smaller than conventional VDC.

  • PDF

Reviews and proposals of low-voltage DRAM circuit design (저전압 DRAM 회로 설계 검토 및 제안)

  • Kim, Yeong Hui;Kim, Gwang Hyeon;Park, Hong Jun;Wi, Jae Gyeong;Choe, Jin Hyeok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.9-9
    • /
    • 2001
  • 반도체 소자가 소형화 되면서 소자의 신뢰성을 유지하고 전력 소모를 줄이기 위해 기가-비트 DRAM의 동작 전압은 1.5V 이하로 줄어들 것으로 기대된다. 따라서 기가-비트 DRAM을 구현하기 위해 저전압 회로 설계 기술이 요구된다. 이 연구에서는 지금까지 발표된 저전압 DRAM 회로 설계 기술에 대한 조사결과를 기술하였고, 기가-비트 DRAM을 위해 4가지 종류의 저전압 회로 설계 기술을 새로이 제안하였다. 이 4가지 저전압 회로 설계 기술은 subthreshold 누설 전류를 줄이는 계층적 negative-voltage word-line 구동기, two-phase VBB(Back-Bias Voltage) 발생기, two-phase VPP(Boosted Voltage) 발생기와 밴드갭 기준전압 발생기에 대한 것인데, 이에 대한 테스트 칩의 측정 결과와 SPICE 시뮬레이션 결과를 제시하였다.

A study on the design of the boosted voltage cenerator for low power DRAM (저전력 DRAM 구현을 위한 boosted voltage generator에 관한 연구)

  • 이승훈;주종두;진상언;신홍재;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.530-533
    • /
    • 1998
  • In this paper, a new scheme of a boosted voltage generator (BVG) is designed for low powr DRAM's. The designed BVG can supply stable $V_{pp}$ using a new circuit operting method. This method controls charge pumping capability by switching the supply voltage and ring oscillator frequency of driving circuit, so the BVG can save area and reduce the powr dissipation during $V_{pp}$ maintaining period. The charge pumping circuit of the BVG suffers no $V_{T}$ loss and is to be applicable to low-voltage DRAM's. $V_{pp}$ level detecting circuit can detect constant value of $V_{pp}$ against temperature variation. The level of $V_{pp}$ varies -0.55%~0.098% during its maintaining period. Charge pumping circuit can make $V_{pp}$ level up to 2.95V with $V_{cc}$ =1.5V. The degecting level of $V_{pp}$ level detecting circuit changes -0.34% ~ 0.01% as temperature varies from -20 to 80.deg. C. The powr dissipation during V.$_{pp}$ maintaining period is 4.1mW.W.1mW.

  • PDF

A study on the low power architecture of multi-giga bit synchronous DRAM's (Giga Bit급 저전력 synchronous DRAM 구조에 대한 연구)

  • 유회준;이정우
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.1-11
    • /
    • 1997
  • The transient current components of the dRAM are analyzed and the sensing current, data path operation current and DC leakage current are revealed to be the major curretn components. It is expected that the supply voltage of less than 1.5V with low VT MOS witll be used in multi-giga bit dRAM. A low voltage dual VT self-timed CMOS logic in which the subthreshold leakage current path is blocked by a large high-VT MOS is proposed. An active signal at each node of the nature speeds up the signal propagation and enables the synchronous DRAM to adopt a fast pipelining scheme. The sensing current can be reduced by adopting 8 bit prefetch scheme with 1.2V VDD. Although the total cycle time for the sequential 8 bit read is the same as that of the 3.3V conventional DRAM, the sensing current is loered to 0.7mA or less than 2.3% of the current of 3.3V conventional DRAM. 4 stage pipeline scheme is used to rduce the power consumption in the 4 giga bit DRAM data path of which length and RC delay amount to 3 cm and 23.3ns, respectively. A simple wave pipeline scheme is used in the data path where 4 sequential data pulses of 5 ns width are concurrently transferred. With the reduction of the supply voltage from 3.3V to 1.2V, the operation current is lowered from 22mA to 2.5mA while the operation speed is enhanced more than 4 times with 6 ns cycle time.

  • PDF

A Sense Amplifier Scheme with Offset Cancellation for Giga-bit DRAM

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Chang, Heon-Yong;Park, Hae-Chan;Park, Nam-Kyun;Sung, Man-Young;Ahn, Jin-Hong;Hong, Sung-Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2007
  • To improve low sense margin at low voltage, we propose a negatively driven sensing (NDS) scheme and to solve the problem of WL-to-BL short leakage fail, a variable bitline reference scheme with free-level precharged bitline (FLPB) scheme is adopted. The influence of the threshold voltage offset of NMOS and PMOS transistors in a latch type sense amplifier is very important factor these days. From evaluating the sense amplifier offset voltage distribution of NMOS and PMOS, it is well known that PMOS has larger distribution in threshold voltage variation than that of NMOS. The negatively-driven sensing (NDS) scheme enhances the NMOS amplifying ability. The offset voltage distribution is overcome by NMOS activation with NDS scheme first and PMOS activation followed by time delay. The sense amplifier takes a negative voltage during the sensing and amplifying period. The negative voltage of NDS scheme is about -0.3V to -0.6V. The performance of the NDS scheme for DRAM at the gigabit level has been verified through its realization on 1-Gb DDR2 DRAM chip.

Recent technology trend of DRAM semiconductor device (DRAM반도체 소자의 최근 기술동향)

  • 박종우
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • DRAM(Dynamic Random Access Memory)은 반도체 소자중 가장 대표적인 기억소자로, switch역활을 하는 1개의 transistor와 data의 전하를 축적하는 1개의 capacitor로 구성된 단순한 구조와 고집적화에 용이하다는 이점을 바탕으로, supercomputer에서 가전제품 및 산업기기에 이르기 까지 널리 이용되어왔다. 한편으로 DRAM사업은 고가의 장치사업으로 조기시장 진입을 위하여 초기에 막대한 자본투자, 급속한 기술발전, 짧은 life cycle, 가격급락등이 심하여, 시한내 투자회수가 이루어져야 하는 위험도가 큰 기회사업이라는 양면성도 가지고 있다. 이러한 관점때문에 새로운 DRAM기술은 매 세대마다 끊임없이 빠른 속도로 개발되어왔다. 그러나 sub-micron이하의 DRAM세대로 갈수록 그에 대한 신기술은 점차 어렵게 되어가고, 한편으로는 system의 다양화에 따른 요구도 강하여, 이제는 통상적인 DRAM의 고집적화/저가의 전략만으로는 생존하기 어려운 실정이므로 개발전략도 수정하여야만 할 것이다. 이러한 어려운 기술한계를 극복하기 위하여 새로운 소자기술 및 공정개발에 대한 breakthrough가 이루어져야 할 것이다. 이러한 관점에서 현재까지의 DRAM개발 추이와 향후의 기술방향에 관하여 몇가지 중요한 item을 설정하여 논의해 보기로 한다.

  • PDF

A High Density Memory Device for Next Generation Low-Voltage and High-Speed Operations (차세대 저 전압, 고속 동작 요구에 대응하는 대용량 메모리의 개발)

  • 윤홍일;이현석;유형식;천기철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.3-5
    • /
    • 2000
  • 1.8V,4Gb DDR SDRAM설계 및 제작을 수행하였다. DRAM동작 시 발생하는 Bit Line간 CouplingNoise를 보상하기 위한 Twisted Open Bit Line 구조를 제안하였다. Low Voltage Operation으로 인한 Bit Line Sense Amplifier 의 동작 저하를 보상하기 위한 BL S/A Pre-Sensing 방식 및 Reference Bit Line Voltage Calibration 구조를 제안하였다. Chip면적 증가로 인한 동작속도 감소의 보상을 위해 Repeater Driver 구조를 Core 및 Periphery Circuit에 적용하여 동작 대비 Chip 면적의 증가를 최소화 하도록 하였다.

  • PDF

Unified Dual-Gate Phase Change RAM (PCRAM) with Phase Change Memory and Capacitor-Less DRAM (Phase Change Memory와 Capacitor-Less DRAM을 사용한 Unified Dual-Gate Phase Change RAM)

  • Kim, Jooyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.76-80
    • /
    • 2014
  • Dual-gate PCRAM which unify capacitor-less DRAM and NVM using a PCM instead of a typical SONOS flash memory is proposed as 1 transistor. $VO_2$ changes its phase between insulator and metal states by temperature and field. The front-gate and back-gate control NVM and DRAM, respectively. The feasibility of URAM is investigated through simulation using c-interpreter and finite element analysis. Threshold voltage of NVM is 0.5 V that is based on measured results from previous fabricated 1TPCM with $VO_2$. Current sensing margin of DRAM is 3 ${\mu}A$. PCM does not interfere with DRAM in the memory characteristics unlike SONOS NVM. This novel unified dual-gate PCRAM reported in this work has 1 transistor, a low RESET/SET voltage, a fast write/erase time and a small cell so that it could be suitable for future production of URAM.