• 제목/요약/키워드: Low Voltage Circuit-Breakers

검색결과 60건 처리시간 0.023초

배선용 차단기 개폐기구의 동특성 향상방안 및 해석 (Study on the Dynamic Modeling of MCCB)

  • 박진영;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.315-320
    • /
    • 2012
  • 일반적으로 저압 회로 보호용 장치로는 ICCB(Insulated case circuit breakers), PCB(Power circuit breakers) 그리고 MCCB(Molded case circuit breakers)를 들 수 있다. 이들 중 가장 보편적으로 사용되는 배선용 차단기(MCCB)는 휴즈 또는 개폐기의 단점인 안전성, 제어성, 협조성 등을 보완한 것이다. 차단기의 성능은 사고전류 발생 시 트립 동작이 순간적이고, 절연능력이 뛰어나야 하므로 매우 중요하다. 따라서 차단기의 개폐 성능은 매우 중요하므로 개폐 기구부의 접촉자 구조 및 접점 그리고 링크구조 등에 대한 기구학적 연구가 필요하다. 본 논문에서는 저압차단기의 기구적 동역학 모델링과 해석을 수행하여 가동자의 개리속도가 빠를수록 차단특성에 유리하다는 결론을 얻었으며, 실제 실험을 통하여 이를 검증하였다.

강자계 구동형 460V/225A/50kA 배선용 차단기 대전력 차단성능평가 (Interrupting Test of Molded Case Circuit Breaker with Strong Driving Magnetic Force)

  • 최영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.36-38
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widly used in power distribution systems. In the paper, it was investigated how much Interrupting capability was improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), Prior to the interrupting testing, it was necessary for the optimum design to analyze magnetic forces on the contact system, generated by current and flux density. This paper presents both our compuational analysis and test results contact system in MCCB.

  • PDF

신 에너지전원설비의 배전계통 연계에 의한 단락용량 검토 (Impacts on short-circuit capacity by interconnection of new energy source generation into the distribution system)

  • 김응상;김슬기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.476-479
    • /
    • 2001
  • Interconnection of new energy sources, such as photovoltaic generation, wind power generation, etc., into the electric power distribution system may result in the increasing short-circuit capacity when a short circuit fault occurs. The short-circuit capacity becomes over the interrupting ratings of circuit breakers, and then they fails to operate in the proper way they prevent fault currents from flowing into the distribution facilities and thus causing them serious damages. This study deals with impacts on the respective short-circuit capacity of both low voltage and extra high voltage distribution systems at which new energy sources are installed. In order to obtain more accurate and all-case values very close to reality in the complicated distribution system, computer simulation tools should be required. In this paper, however, its focus is placed on examining the varying trend of short-circuit capacity, which may happen owing to new energy source interconnection, as a previewing step for exhaustive simulation studies.

  • PDF

A New Reclosing and Re-breaking DC Thyristor Circuit Breaker for DC Distribution Applications

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.272-281
    • /
    • 2017
  • The DC circuit breaker is essential for supplying stable DC power with the advent of DC transmission/distribution and sensitive loads. Compared with mechanical circuit breakers, which must interrupt a very large fault current due to their slow breaking capability, a solid-state circuit breaker (SSCB) can quickly break a fault current almost within 1 [ms]. Thus, it can reduce the damage of an accident a lot more than mechanical circuit breakers. However, previous DC SSCBs cannot perform the operating duty, and are not economical because many SCR are required. Therefore, this paper proposes a new DC SSCB suitable for DC grids. It has a low semiconductor conduction loss, quick reclosing and rebreaking capabilities. As a result, it can perform the operating duties of reclosing and rebreaking. The proposed DC SSCB is designed and implemented so that it is suitable for home dc distribution at a rated power of 5 [kW] and a voltage of 380 [V]. The operating characteristics are confirmed by simulation and experimental results. In addition, this paper suggests design guidelines so that it can be applied to other DC grids. It is anticipated that the proposed DC SSCB may be utilized to design and realize many DC grid systems.

제어전극을 갖는 방전소자의 방전개시전압 설계에 관한 연구 (A Study on the Design of Discharge Voltage of Discharge Element with Control Electrode)

  • 박근석;최준웅;이대동
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1512-1516
    • /
    • 2018
  • The power system and control system constantly reveals surge voltage such as switching surge of lighting devices and power conversion devices, operating and stops surge of rotating devices, charge & discharge surge, opening & closing surge of circuit breakers and the like. Such a surge voltages can cause damage or malfunction of the element such as CPU, Memory, semiconductor etc. In the industry, in order to protect the system from the surge voltage, a surge protector with low discharge starting voltage, fast response time, and low capacitance is required, and technical development research for that is ongoing. In this paper, in order to solve the problem of the existing GDT discharge tube not discharging from the transient voltage which is higher than the commercial voltage and lower than the discharge voltage of the discharge element, we have developed a discharge element having the control electrode & control circuit. The discharge element having the control electrode and the control circuit can control the discharge voltage according to the needs of the consumer and can satisfy the requirement of the discharge element and the technology of the surge protector downsizing technology and the surge protection technology. It is judged to be effective for development.

병렬아크의 고속차단에 관한 연구 (A Study on the High Speed Interruption of Parallel Arcing)

  • 길경석;지홍근;박대원;김일권;김영일;조영진
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.95-100
    • /
    • 2008
  • 기존의 누전차단기는 병렬아크에 대해서 차단을 실패하거나 차단시간이 결어지는 결함이 있었다. 본 논문에서는 저압 옥내배선 계통에서 병렬아크를 모의하여 기존 누전차단기의 차단특성을 분석하고, 병렬아크 검출에 적합한 공심형 전류센서와 신호변환회로를 설계하여 기존 방식의 누전차단기에 적용하였다. 제안한 방식은 병렬아크의 발생위치와 관계없이 누전차단기를 동작시켰으며, 차단시간은 아크가 발생한 위상에 따라 $1.74{\sim}8.3[ms]$의 범위로 기존 차단기에 비해 약 5배 빠른 특성이다.

AgWC/AgCdO 접점의 소모특성에 미치는 개리속도의 영향 (The Effect of Opening Velocity on the Arc Erosion of AgWC/AgCdO Contacts)

  • 연영명;박흥태;이상엽;조상순;오일성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.517-520
    • /
    • 2003
  • The purpose of this paper is to investigate the effect of arc current and contact velocity on the erosion of silver contact to be used in low voltage circuit breakers. The arc current range from $2kA_{rms}$ to $20kA_{rms}$. A test system allows the control of the opening velocity profiles with contact velocities up to 10m/s and also enables the synchronization of the contact opening with a point on the arc current waveform. Contact erosion is evaluated by measuring the mass change of the cathode and anode. The results show that increase the opening velocity from 2m/s to 6m/s leads to an decrease in the contact erosion. The material transfer from one electrode to another is shown to depend on the transfer charge and the opening velocity of the contacts.

  • PDF

저압직류용 하이브리드 차단기 (Hybrid LVDC Circuit Breakers)

  • 김효성
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.489-497
    • /
    • 2022
  • This work investigates the commutation characteristics of the current flowing through an electrical-contact-type switch to the semiconductor switch branch during the breaking operation of hybrid DC switchgear. A simple, reliable, low-cost natural commutation method is proposed, and the current commutation characteristics are analyzed in accordance with the conduction voltage drop of the semiconductor switch branch through experiments. A prototype 400 V/10 A class natural commutation type hybrid DC switchgear is set up. Its performance is verified, and its characteristics are analyzed.

Implementing a Dielectric Recovery Strength Measuring System for Molded Case Circuit Breakers

  • Cho, Young-Maan;Rhee, Jae-ho;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1752-1758
    • /
    • 2018
  • In a low-voltage distribution system, the molded case circuit breaker (MCCB) is a widely used device to protect loads by interrupting over-current; however the hot gas generated from the arc discharge in the interrupting process depletes the dielectric recovery strength between electrodes and leads to re-ignition after current-zero. Even though the circuit breaker is ordinarily tripped and successfully interrupts the over-current, the re-ignition causes the over-current to flow to the load again, which carries over the failure interruption. Therefore, it is necessary to understand the dielectric recovery process and the dielectric recovery voltage of the MCCB. To determine these characteristics, a measuring system comprised of the experimental circuit and source is implemented to apply controllable recovery voltage and over-current. By changing the controllable recovery voltage, in this work, re-ignition is driven repeatedly to obtain the dielectric recovery voltage V-t curve, which is used to analyze the dielectric recovery strength of the MCCB. A measuring system and an evaluation technique for the dielectric recovery strength of the MCCB are described. By using this system and method, the measurement to find out the dielectric recovery characteristics after current-zero for ready-made products is done and it is confirmed that which internal structure of the MCCB affects the dielectric recovery characteristics.

460[V]/400[A]/85[kA] 배선용 차단기의 아크런너 변형을 통한 차단성능 향상 (Improvement of Short Circuit Performance in 460[V]/400{A]/85(kA] Molded Case Circuit Breakers)

  • 이승수;허준;윤재훈;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.394-394
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker(hereafter MCCB) depends on the shape, arrangement, and kinds of material of arc runner. This paper is focused on understanding the interrupting capability, more specifically of the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF