• Title/Summary/Keyword: Low Density Parity Check Code(LDPC)

Search Result 121, Processing Time 0.02 seconds

Channel Estimation and LDPC Code Puncturing Schemes Based on Incremental Pilots for OFDM

  • Jung, Sung-Yoon;Kim, Sung-Hwan
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.603-606
    • /
    • 2010
  • In this letter, we propose a channel estimation algorithm based on incremental pilots. These are pilots additionally inserted after puncturing the modulated orthogonal frequency division multiplexing (OFDM) symbols to enhance channel estimation performance without lowering bandwidth efficiency. A low-density parity-check code puncturing scheme is also proposed to prevent the performance degradation due to the codeword bit loss caused by punctured OFDM symbols.

Energy Efficiency in Wireless Sensor Networks using Linear-Congruence on LDPC codes (LDPC 코드의 Linear-Congruence를 이용한 WSN 에너지 효율)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.68-73
    • /
    • 2007
  • Recently, WSN(wireless sensor networks) consists of several sensor nodes in sensor field. And each sensors have the enforced energy constraint. Therefore, it is important to manage energy efficiently. In WSN application system, FEC(Forward error correction) increases the energy efficiency and data reliability of the data transmission. LDPC(Low density parity check) code is one of the FEC code. It needs more encoding operation than other FEC code by growing codeword length. But this code can approach the Shannon capacity limit and it is also can be used to increase the data reliability and decrease the transmission energy. In this paper, the author adopt Linear-Congruence method at generating parity check matrix of LDPC(Low density parity check) codes to reduce the complexity of encoding process and to enhance the energy efficiency in the WSN. As a result, the proposed algorithm can increase the encoding energy efficiency and the data reliability.

Construction of Semi-Algebra Low Density Parity Check Codes for Parallel Array Processing (병렬 어레이 프로세싱을 위한 반집합 대수 LDPC 부호의 구성)

  • Lee Kwang-jae;Lee Moon-ho;Lee Dong-min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we present a novel LDPC code construction called as semi-algebra low density parity check(LDPC) codes which is one kind of deterministic LDPC code based on dual-diagonal sub-matrix. The constructing method results in a class of high rate LDPC codes. Codes in this class have a large girth and good minimum distances. Furthermore, they can be implemented by simple parallel array architecture using cyclic shift register and perform well with the iterative decoding.

Analysis of Performance according to LDPC Decoding Algorithms (저밀도 패리티 검사부호의 복호 알고리즘에 따른 성능 비교 분석)

  • Yoon, Tae Hyun;Park, Jin Tae;Joo, Eon Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.972-978
    • /
    • 2012
  • LDPC (low density parity check) code shows near Shannon limit performance by iterative decoding based on sum-product algorithm (SPA). Message updating procedure between variable and check nodes in SPA is done by a scheduling method. LDPC code shows different performance according to scheduling schemes. The conventional researches have been shown that the shuffled BP (belief propagation) algorithm shows better performance than the standard BP algorithm although it needs less number of iterations. However the reason is not analyzed clearly. Therefore the reason of difference in performance according to LDPC decoding algorithms is analyzed in this paper. 4 cases according to satisfaction of parity check condition are considered and compared. As results, the difference in the updating procedure in a cycle in the parity check matrix is considered to be the main reason of performance difference.

Performance of Noise-Predictive Turbo Equalization for PMR Channel (수직자기기록 채널에서 잡음 예측 터보 등화기의 성능)

  • Kim, Jin-Young;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.758-763
    • /
    • 2008
  • We introduce a noise-predictive turbo equalization using noise filter in perpendicular magnetic recording(PMR) channel. The noise filter mitigates the colored noise in high-density PMR channel. In this paper, the channel detectors used are SOVA (Soft Output Viterbi Algorithm) and BCJR algorithm which proposed by Bahl et al., and the outer decoder used is LDPC (Low Density Parity Check) code that is implemented by sum-product algorithm. Two kinds of LDPC codes are experimented. One is the 0.5Kbyte (4336,4096) LDPC code with the code rate of 0.94, and the other is 1Kbyte (8432,8192) LDPC code with the code rate of 0.97.

Protograph-Based Block LDPC Code Design for Marine Satellite Communications (해양 위성 통신을 위한 프로토그래프 기반 블록 저밀도 패리티 검사 부호 설계)

  • Jeon, Ki Jun;Ko, Byung Hoon;Myung, Se-Chang;Lee, Seong Ro;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.515-520
    • /
    • 2014
  • In this paper, the protograph-based block low density parity check (LDPC) code, which improves the performance and reduces the encoder/decoder complexity than the conventional Digital Video Broadcasting Satellite Second Generation (DVB-S2) LDPC code used for the marine satellite communication, is proposed. The computer simulation results verify that the proposed protograph-based LDPC code has the better performance in both the bit error rate (BER) and the frame error rate (FER) than the conventional DVB-S2 LDPC code. Furthermore, by analyzing the encoding and decoding computational complexity, we show that the protograph-based block LDPC code has the efficient encoder/decoder structure.

Design and Performance Evaluation of Improved Turbo Equalizer (개선된 터보 등화기의 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.28-38
    • /
    • 2013
  • In this paper, we propose a improved turbo equalizer which generates a feedback signal through a simple calculation to improve performance in single carrier system with the LMS(least mean square) algorithm based equalizer and LDPC(low density parity check) codes. LDPC codes can approach the Shannon limit performance closely. However, computational complexity of LDPC codes is greatly increased by increasing the repetition of the LDPC codes and using a long parity check matrix in harsh environments. Turbo equalization based on LDPC code is used for improvement of system performance. In this system, there is a disadvantage of very large amount of computation due to the increase of the repetition number. To less down the amount of this complicated calculation, The proposed improved turbo equalizer adjusts the adoptive equalizer after the soft decision and the LDPC code. Through the simulation results, it's confirmed that performance of improved turbo equalizer is close to the SISO-MMSE(soft input soft output minimum mean square error) turbo equalizer based on LDPC code with the smaller amount of calculation.

Code Rate 1/2, 2304-b LDPC Decoder for IEEE 802.16e WiMAX (IEEE 802.16e WiMAX용 부호율 1/2, 2304-비트 LDPC 복호기)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.414-422
    • /
    • 2011
  • This paper describes a design of low-density parity-check(LDPC) decoder supporting block length 2,304-bit and code rate 1/2 of IEEE 802.16e mobile WiMAX standard. The designed LDPC decoder employs the min-sum algorithm and partially parallel layered-decoding architecture which processes a sub-matrix of $96{\times}96$ in parallel. By exploiting the properties of the min-sum algorithm, a new memory reduction technique is proposed, which reduces check node memory by 46% compared to conventional method. Functional verification results show that it has average bit-error-rate(BER) of $4.34{\times}10^{-5}$ for AWGN channel with Fb/No=2.1dB. Our LDPC decoder synthesized with a $0.18{\mu}m$ CMOS cell library has 174,181 gates and 52,992 bits memory, and the estimated throughput is about 417 Mbps at 100-MHz@l.8-V.

A performance analysis of layered LDPC decoder for mobile WiMAX system (모바일 WiMAX용 layered LDPC 복호기의 성능분석)

  • Kim, Eun-Suk;Kim, Hae-Ju;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.921-929
    • /
    • 2011
  • This paper describes an analysis of the decoding performance and decoding convergence speed of layered LDPC(low-density parity-check) decoder for mobile WiMAX system, and the optimal design conditions for hardware implementation are searched. A fixed-point model of LDPC decoder, which is based on the min-sum algorithm and layered decoding scheme, is implemented and simulated using Matlab model. Through fixed-point simulations for the block lengths of 576, 1440, 2304 bits and the code rates of 1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6 specified in the IEEE 802.16e standard, the effect of internal bit-width, block length and code rate on the decoding performance are analyzed. Simulation results show that fixed-point bit-width larger than 8 bits with integer part of 5 bits should be used for acceptable decoding performance.

LDPC Generation and Decoding concatenated to Viterbi Decoder based on Sytematic Convolutional Encoder (길쌈부호기를 이용한 LDPC 패리티검사 행렬생성 및 비터비 복호 연계 LDPC 복호기)

  • Lee, Jongsu;Hwang, Eunhan;Song, Sangseob
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.39-43
    • /
    • 2013
  • In this paper, we suggest a new technique for WPC parity-check matrix (H-matrix) generation and a corresponding decoding process. The key idea is to construct WPC H-matrix by using a convolutional encoder. It is easy to have many different coderates from a mother code with convolutional codes. However, it is difficult to have many different coderates with LDPC codes. Constructing LDPC Hmatrix based on a convolutional code can easily bring the advantage of convolutional codes to have different coderates. Moreover, both LDPC and convolutional decoding algorithms can be applied altogether in the decoding part. This process prevents the performance degradation of short-length WPC code.

  • PDF