• 제목/요약/키워드: Low DC-DC converter

검색결과 887건 처리시간 0.028초

PCB변압기를 이용한 초박형 DC/DC컨버터 개발 (Development of Low-profile DC/DC Converter Using PCB Transformer)

  • 김동형;최병조;이기조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.476-479
    • /
    • 2002
  • The proposed DC/DC converter employs a pair of neighboring printed-circuit-board windings as a coreless transformer Thus, the proposed DC/DC converter can be fabricated In an ultra low-profile fashion. The performance of the proposed low-profile DC/DC converter is confirmed with experiments on a prototype converter that delivers 58W of power at the maximum efficiency of $84\%$.

  • PDF

저 전압 트리거형 ESD 보호회로를 탑재한 저 전압 Step-down DC-DC Converter 설계 (The Design of low voltage step-down DC-DC Converter with ESD protection device of low voltage triggering characteristics)

  • 육승범;이재현;구용서
    • 전기전자학회논문지
    • /
    • 제10권2호통권19호
    • /
    • pp.149-155
    • /
    • 2006
  • In this study, the design of low voltage DC-DC converter with low triggering ESD (Electro-Static Discharge) protection circuit was investigated. The purpose of this paper is design optimization for low voltage(2.5V to 5.5V input range) DC-DC converter using CMOS switch. In CMOS switch environment, a dominant loss component is not switching loss but conduction loss at 1.2MHz switching frequency. In this study a constant frequency PWM converter with synchronous rectifier is used. And zener Triggered SCR device to protect the ESD phenomenon was designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 8V.

  • PDF

A New High Efficiency and Low Profile On-Board DC/DC Converter for Digital Car Audio Amplifiers

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.83-93
    • /
    • 2006
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifiers is proposed. The proposed converter shows low conduction loss due to the low voltage stress of the secondary diodes, a lack of DC magnetizing current for the transformer, and a lack of stored energy in the transformer. Moreover, since the primary MOSFETs are turned-on under zero-voltage-switching (ZVS) conditions and the secondary diodes are turned-off under zero-current-switching (ZCS) conditions, the proposed converter has minimized switching losses. In addition, the input filter can be minimized due to a continuous input current, and an output inductor is absent in the proposed converter. Therefore, the proposed converter has the desired features, high efficiency and low profile, for a viable power supply for digital car audio amplifiers. A 60W industrial sample of the proposed converter has been implemented for digital car audio amplifiers with a measured efficiency of $88.3\%$ at nominal input voltage.

소형 전자기기를 위한 스위치드 커패시터 방식의 강압형 DC-DC 변환기 설계 (Design of Step-down DC-DC Converter using Switched-capacitor for Small-sized Electronics Equipment)

  • 권보민;허윤석;송한정
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.4984-4990
    • /
    • 2010
  • 기존의 DC-DC Converter에서는 전압 변화 및 에너지 축적소자로서 자성부품인 인덕터를 사용하여 자속 발생에 의한 전력 손실로 효율이 낮아지고, 자성부품의 부피가 크고 무거우며 가격이 비싸 반도체 칩으로 집적화하기에 문제점을 가지고 있다. 이러한 문제점을 개선하기 위해 본 논문에서는 인덕터없는 스위치드 커패시터 방식을 이용한 저전력 강압형 CMOS DC-DC Converter를 제안한다. 제안된 DC-DC Converter는 0.5um 공정을 이용하여 설계하였으며, 설계된 DC-DC 컨버터는 200kHz의 주파수로 동작하며 96%이상의 전력효율을 cadence 시뮬레이션을 통하여 얻을 수 있다.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

강압형과 하프 브리지 직렬형 DC-DC 컨버터 (Buck and Half Bridge Series DC-DC Converter)

  • 김창선
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

새로운 양방향 ZVS PWM Sepic/Zeta DC-DC 컨버터 (New Bidirectional ZVS PWM Sepic/Zeta DC-DC Converter)

  • 김인동;팽성환;박성대;노의철;안진우
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.301-310
    • /
    • 2007
  • Bidirectional DC-DC converters allow transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, Dey are being increasingly used in many applications such as battery charge/dischargers, do uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This Paper Proposes a new bidirectional Sepic/Zeta converter. It has low switching loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system. The proposed converter also has both transformer-less version and transformer one.

저압 직류 배전용 양극성 DC-DC 컨버터에 관한 연구 (A Study on Bipolar DC-DC Converter for Low Voltage Direct Current Distribution)

  • 이정용;김호성;조진태;김주용;조영훈
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.229-236
    • /
    • 2019
  • This study proposes a DC-DC converter topology of solid-state transformer for low-voltage DC distribution. The proposed topology consists of a voltage balancer and bipolar DC-DC converter. The voltage and current equations are obtained on the basis of switching states to design the controller. The open-loop gain of the controller is achieved using the derived voltage and current equations. The controller gain is selected through the frequency analysis of the loop gain. The inductance and capacitance are calculated considering the voltage and current ripples. The prototype is fabricated in accordance with the designed system parameters. The proposed topology and designed controller are verified through simulation and experiment.

광전지 패널과 DC-DC 컨버터 출력의 직렬 접속을 이용한 고효율 PV 시스템 (A high efficient PV system using series connection of DC-DC converter's output with photovoltaic panel)

  • 김호성;김종현;민병덕;유동욱;홍지태;이동길;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1146-1147
    • /
    • 2008
  • PV Power Conditioning System (PCS) must have high conversion and low cost. Generally, PV PCS uses either a single converter or multilevel module integrated converter (MIC). Each of these approaches has both advantage and disadvantage. For a high conversion efficiency and low cost of PV module, this paper proposes series connection of module integrated DC-DC converter's output with PV panel. Output voltage of PV panel is connected to the output capacitor of flyback converter. Thus, converter's output voltage is added to the output voltage of PV panel. Isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces power level of DC-DC converter and enhances the energy conversion efficiency compared with conventional DC-DC converter.

  • PDF

마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계 (Design of DC-DC Buck Converter Using Micro-processor Control)

  • 장인혁;한지훈;임홍우
    • 공학기술논문지
    • /
    • 제5권4호
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.