• Title/Summary/Keyword: Lorentzian para Sasakian manifolds

Search Result 6, Processing Time 0.022 seconds

CONFORMAL SEMI-SLANT SUBMERSIONS FROM LORENTZIAN PARA SASAKIAN MANIFOLDS

  • Kumar, Sushil;Prasad, Rajendra;Singh, Punit Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.637-655
    • /
    • 2019
  • In this paper, we introduce conformal semi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds. We investigate integrability of distributions and the geometry of leaves of such submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds. Moreover, we examine necessary and sufficient conditions for such submersions to be totally geodesic where characteristic vector field ${\xi}$ is vertical.

ON (ϵ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Prasad, Rajendra;Srivastava, Vibha
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.297-306
    • /
    • 2012
  • In this paper we study (${\epsilon}$)-Lorentzian para-Sasakian manifolds and show its existence by an example. Some basic results regarding such manifolds have been deduced. Finally, we study conformally flat and Weyl-semisymmetric (${\epsilon}$)-Lorentzian para-Sasakian manifolds.

THE STUDY OF *-RICCI TENSOR ON LORENTZIAN PARA SASAKIAN MANIFOLDS

  • M. R. Bakshi;T. Barman;K. K. Baishya
    • Honam Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • We consider the *-general critical equation on LP Sasakian manifolds, and show that such a manifold is generalized η-Einstein. After then, we consider LP Sasakian manifolds with *-conformally semisymmetric condition, and show that such manifolds are *-Einstein. Moreover, we show that the *-conformally semisymmetric LP Sasakian manifold is locally isometric to En+1(0) × Sn(4).

YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Chidananda, Shruthi;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.213-228
    • /
    • 2022
  • In the present paper, we aim to study Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved, if the scalar curvature of an 𝜂-Einstein Lorentzian para-Sasakian manifold M is constant, then either 𝜏 = n(n-1) or, 𝜏 = n-1. Also we constructed an example to justify this. Next, it is proved that, if a three dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton for V is an infinitesimal contact transformation and tr 𝜑 is constant, then the soliton is expanding. Also we proved that, suppose a 3-dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton, if tr 𝜑 is constant and scalar curvature 𝜏 is harmonic (i.e., ∆𝜏 = 0), then the soliton constant λ is always greater than zero with either 𝜏 = 2, or 𝜏 = 6, or λ = 6. Finally, we proved that, if an 𝜂-Einstein Lorentzian para-Sasakian manifold M represents a Riemann soliton for the potential vector field V has constant divergence then either, M is of constant curvature 1 or, V is a strict infinitesimal contact transformation.

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

$zeta$-null geodesic gradient vector fields on a lorentzian para-sasakian manifold

  • Matsumoto, Koji;Mihai, Ion;Rosca, Radu
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.17-31
    • /
    • 1995
  • A Lorentzian para-Sasakian manifold M$(\varphi, \zeta, \eta, g)$ (abr. LPS-manifold) has been defined and studied in [9] and [10]. On the other hand, para-Sasakian (abr. PS)-manifolds are special semi-cosympletic manifolds (in the sense of [2]), that is, they are endowed with an almost cosympletic 2-form $\Omega$ such that $d^{2\eta}\Omega = \psi(d^\omega$ denotes the cohomological operator [6]), where the 3-form $\psi$ is the associated Lefebvre form of $\Omega$ ([8]). If $\eta$ is exact, $\psi$ is a $d^{2\eta}$-exact form, the manifold M is called an exact Ps-manifold. Clearly, any LPS-manifold is endowed with a semi-cosymplectic structure (abr. SC-structure).

  • PDF