THE STUDY OF *-RICCI TENSOR ON LORENTZIAN PARA SASAKIAN MANIFOLDS

M. R. Bakshi*, T. Barman, and K. K. Baishya

Abstract

We consider the -general critical equation on LP Sasakian manifolds, and show that such a manifold is generalized η-Einstein. After then, we consider LP Sasakian manifolds with $*$-conformally semisymmetric condition, and show that such manifolds are $*$-Einstein. Moreover, we show that the $*$-conformally semisymmetric LP Sasakian manifold is locally isometric to $E^{n+1}(0) \times S^{n}(4)$.

1. Introduction

The symbols \hat{S}^{*}, ρ^{*}, R and r^{*} stand for the $*$-Ricci operator, $*$-Ricci tensor, Riemann curvature tensor and $*$-scalar curvature respectively. The study of *-Ricci tensor was initiated by Tachibana [25] in 1959 in the context of almost Hermitian manifolds. The $*$-Ricci tensor of real hypersurfaces in a non-flat complex space form is defined [12] as

$$
\rho^{*}\left(X_{1}, X_{2}\right)=g\left(\hat{S}^{*} X_{1}, X_{2}\right)=\frac{1}{2} \operatorname{Trace}\left\{\phi \circ R\left(X_{1}, \phi X_{2}\right)\right\},
$$

where ϕ is $(1,1)$ tensor field and X_{1}, X_{2} are any vector fields.
The study of $*$-Ricci tensor has now become the topic of growing interest by many geometers and its characteristics were studied in the frame of different structures, namely, Kenmotsu manifolds [26], Sasakian manifolds and (κ, μ)-contact manifolds ([11], [27]), α-cosymplectic manifolds ([2]) and the references therein.

In 2019, Kaimakamis and Panagiotidou ([15]) introduced the $*$-Weyl conformal curvature tensor C^{*} of real hypersurfaces in non-flat complex

[^0]space forms
\[

$$
\begin{align*}
& C^{*}\left(X_{1}, X_{2}\right)=R\left(X_{1}, X_{2}\right) \\
& -\frac{1}{2 n-1}\left[\frac{r^{*}}{2 n}\left(X_{1} \wedge_{g} X_{2}\right)+\left(X_{1} \wedge_{g} \hat{S}^{*} X_{2}\right)+\left(\hat{S}^{*} X_{1} \wedge_{g} X_{2}\right)\right] \tag{1}
\end{align*}
$$
\]

where $\left(X_{1} \wedge_{g} X_{2}\right) X_{3}=g\left(X_{2}, X_{3}\right) X_{1}-g\left(X_{1}, X_{3}\right) X_{2}$. The $*$-Weyl conformal curvature tensor has also been studied by [27].

In 1989, Matsumoto [16] initiated the studies on Lorentzian ParaSasakian manifolds (or in short $L P S M$) which had also been independently defined by Mihai and Rosca [19]. Matsumoto, Mihai and Rosca ([17]) gave a five dimensional example of $L P S M$. Thereafter, many research papers were published on this structure (see [20], [21], [7], [13], [3], [5], [14], [24]) and the references therein. In [13], authors studied *-Ricci tensor in the frame of $L P S M$ by finding the relation between the Ricci and the $*$-Ricci tensor.

Recently, the authors of [6] have claimed the existence of some critical metrics on $G R W$-spacetime by considering the general critical equation as

$$
\begin{equation*}
\lambda \rho+\sigma g=\operatorname{Hess}(\lambda), \lambda, \sigma \text { being smooth functions. } \tag{2}
\end{equation*}
$$

We note that the foregoing equation have the flavour of Fischer-Marsden critical equation ([9], [10]) for $\sigma=\Delta \lambda$ and Miao-Tam critical equation [18] for $\sigma=\Delta \lambda+1$.

Then the authors in [2] introduced and studied the $*$-general critical equation which is defined as

$$
\begin{equation*}
\operatorname{Hess}(\lambda)=\lambda \rho^{*}+\sigma g \tag{3}
\end{equation*}
$$

Motivated from the above studies, in the present article we consider the $*$-general critical equation and the $*$-conformally semisymmetric condition and obtained some interesting results.

Our present paper deals with the study of $*$-general critical equation on Lorentzian Para Sasakian manifolds and it is shown that such a manifold is generalized η-Einstein. We further consider the $*$-conformally semisymmetric Lorentzian Para Sasakian manifolds and established that such a manifold is locally isometric to $E^{n+1}(0) \times S^{n}(4)$.

2. Preliminaries

Let $M^{2 n+1}$ be a $(2 n+1)$-dimensional differential manifold endowed with a $(1,1)$ tensor field ϕ, a vector field ξ, an 1-form η and a Lorentzian metric g of type $(0,2)$ such that for each point $a \in M$, the tensor g_{a} $: T_{a} M \times T_{a} M \rightarrow \mathbb{R}$ is a non-degenerate, symmetric and of signature $(-,+,+, \ldots,+)$, where $T_{a} M$ denotes the tangent space of M at a and \mathbb{R} is the real number set which satisfies

$$
\begin{gather*}
\phi^{2}=I+\eta \otimes \xi \tag{4}\\
\eta(\xi)=-1 \tag{5}\\
g(X, \xi)=\eta(X) \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{7}
\end{equation*}
$$

for all vector fields X, Y on $M^{2 n+1}$. Then the structure (ϕ, ξ, η, g) is called Lorentzian almost para contact structure and the manifold with the structure (ϕ, ξ, η, g) is called a Lorentzian almost para contact manifold. In the Lorentzian almost para contact manifold M, the following relations hold ([16])

$$
\begin{equation*}
\phi \xi=0, \eta \circ \phi=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
g(\phi X, Y)=g(X, \phi Y) \tag{9}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\Omega(X, Y)=g(\phi X, Y)=g(X, \phi Y) \tag{10}
\end{equation*}
$$

for any vector fields X and Y, then the tensor field $\Omega(X, Y)$ is a symmetric $(0,2)$ tensor field.

A Lorentzian almost para contact manifold M endowed with the structure (ϕ, ξ, η, g) is called an $L P S M$ if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y-g(\phi X, \phi Y) \xi=\eta(Y) \phi^{2} X \tag{11}
\end{equation*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. In an $L P S M$ with the structure (ϕ, ξ, η, g), it is easily seen that ([16])

$$
\begin{gather*}
\left(\nabla_{X} \eta\right) Y=g(X, \phi Y)=\Omega(X, Y)=\left(\nabla_{Y} \eta\right) X, \tag{13}\\
\rho(X, \xi)=2 n \eta(X), \hat{S} \xi=2 n \xi,
\end{gather*}
$$

$$
\begin{gather*}
R(Y, U) \xi=\eta(U) Y-\eta(Y) U, \\
\eta(R(Y, U) V)=\eta(Y) g(U, V)-\eta(U) g(Y, V), \\
R(Y, U) \phi X \\
\left.=\begin{array}{l}
\phi R(Y, U) X+g(U, X) \phi Y-g(Y, X) \phi U+g(\phi Y, X) U \\
-g(\phi U, X) Y+2[g(\phi Y, X) \eta(U)-g(\phi U, X) \eta(Y)] \xi \\
+2[\eta(U) \phi Y-\eta(Y) \phi U] \eta(X), \\
\\
R(X, Y) Z \\
\phi R(X, Y) \phi Z+g(X, Z) Y-g(Y, Z) X+\Omega(Y, Z) \phi X \\
-\Omega(X, Z) \phi Y+2[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi \\
+2[\eta(X) Y-\eta(Y) X] \eta(Z), \\
= \\
\\
\\
\\
\hline
\end{array} \nabla_{X} R\right)(Y, U(\phi U, X) Y-g(\phi Y, X) U]-\phi R(Y, U) X \\
\\
+g(Y, X) \phi U-g(U, X) \phi Y-2[g(\phi Y, X) \eta(U) \\
\quad-g(\phi U, X) \eta(Y)] \xi-2[\eta(U) \phi Y-\eta(Y) \phi U] \eta(X)
\end{gather*}
$$

for all vector fields X, Y, U and Z on $M^{2 n+1}$.
Lemma 2.1. ([13]) In a $(2 n+1)$-dimensional LPSM the followings hold

$$
\begin{align*}
\nabla \hat{S} \xi & =2 n \phi-\hat{S} \phi \tag{20}\\
\nabla_{\xi} \hat{S} & =2 a I-2 \hat{S} \phi+2 a \eta \otimes \xi \tag{21}\\
\hat{S}^{*} & =\hat{S}-a \phi+(2 n-1) I+(4 n-1) \eta \otimes \xi \tag{22}
\end{align*}
$$

where a is trace ϕ.
A Lorentzian Para-Sasakian manifold is said to be a generalized η Einstein manifold [28] if its Ricci tensor satisfies

$$
\rho=x g+y \eta \otimes \eta+z \Omega,
$$

where x, y, z are smooth functions. For $z=0$, the manifold reduces to an η-Einstein manifold.

3. *-general critical equations on $L P S M$

Lemma 3.1. An LPSM with *-general critical equations satisfies the followings

$$
\begin{align*}
& R(X, Y) D \lambda \\
= & \lambda\left\{\left(\nabla_{X} \hat{S}\right) Y-\left(\nabla_{Y} \hat{S}\right) X\right\}-a \lambda\{\eta(Y) X-\eta(X) Y\} \\
& +(X \lambda) \hat{S} Y-(Y \lambda) \hat{S} X-a\{(X \lambda) \phi Y-(Y \lambda) \phi X\} \\
& +\{(2 n-1)(X \lambda)+(X \sigma)\} Y-\{(2 n-1)(Y \lambda)+(Y \sigma)\} X \\
& +(4 n-1)\{(X \lambda) \eta(Y)-(Y \lambda) \eta(X)\} \xi \\
& +(4 n-1) \lambda\{\eta(Y)(\phi X)-\eta(X)(\phi Y)\}, \tag{23}
\end{align*}
$$

$$
\frac{\lambda}{2} D r+r(D r)+a(\phi D \lambda)+2 n D \sigma
$$

$$
-\left\{a^{2}-2 n(2 n-1)+(4 n-1)\right\} D \lambda
$$

$$
\begin{equation*}
=\{(2 n-1) a \lambda+(4 n-1)(\xi \lambda)\} \xi \tag{24}
\end{equation*}
$$

Proof. Let an LPSM admit the *-general critical equation (3). In view of (22), we have

$$
\begin{align*}
& \operatorname{Hess}(\lambda)(X, Y) \\
= & \lambda \rho(X, Y)+\{(2 n-1) \lambda+\sigma\} g(X, Y) \\
& -a \lambda g(X, \phi Y)+(4 n-1) \lambda \eta(X) \eta(Y), \tag{25}
\end{align*}
$$

which leads to

$$
\begin{align*}
& \nabla_{X} D \lambda \\
= & \lambda \hat{S} X+\{(2 n-1) \lambda+\sigma\} X-a \lambda \phi X+(4 n-1) \lambda \eta(X) \xi \tag{26}
\end{align*}
$$

and

$$
\begin{array}{ll}
& \nabla_{Y} \nabla_{X} D \lambda \\
= & \lambda \nabla_{Y} \hat{S}(X)+(Y \lambda) \hat{S} X-a \lambda \nabla_{Y} \phi(X)-(Y \lambda) \phi X \\
& +\{(2 n-1) \lambda+\sigma\} \nabla_{Y} X+\{(2 n-1)(Y \lambda)+(Y \sigma)\} X \\
& +(4 n-1)\left\{(Y \lambda) \eta(X) \xi+\lambda \nabla_{Y} \eta(X) \xi+\lambda \eta(X) \nabla_{Y} \xi\right\} \tag{27}
\end{array}
$$

after taking the covariant differentiation. In view of (26) and (27), we obtain (23) and then taking the contraction of (23), we obtain (24).

Again, the relation (23) yields

$$
\begin{aligned}
& R(X, Y, Z, D \lambda)+\lambda \operatorname{div}(R(X, Y) Z) \\
= & a \lambda\{\eta(Y) g(X, Z)-\eta(X) g(Y, Z)\}-(X \lambda) \rho(Y, Z)+(Y \lambda) \rho(X, Z) \\
& +a\{(X \lambda) g(\phi Y, Z)-(Y \lambda) g(\phi X, Z)\}-\{(2 n-1)(X \lambda)+(X \sigma)\} g(Y, Z) \\
& +\{(2 n-1)(Y \lambda)+(Y \sigma)\} g(X, Z)-(4 n-1)\{(X \lambda) \eta(Y)-(Y \lambda) \eta(X)\} \eta(Z) \\
& -(4 n-1) \lambda\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} Z .
\end{aligned}
$$

Thus, we can state that:
Proposition 3.2. Let $\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ be an LPSM satisfying the *-general critical equations. For the harmonic and radial Riemannian curvature tensor, we obtain

$$
\begin{aligned}
& \lambda \eta \otimes\{a I-(4 n-1) \phi\}+d \sigma \otimes I \\
& +d \lambda \otimes\{\hat{S}-a \phi+(2 n-1) I+(4 n-1) \eta \otimes \xi\} \\
= & \lambda\{a I-(4 n-1) \phi\} \otimes \eta+I \otimes d \sigma \\
& +\{\hat{S}-a \phi+(2 n-1) I+(4 n-1) \eta \otimes \xi\} \otimes d \lambda .
\end{aligned}
$$

Lemma 3.3. If ($M^{2 n+1}, \phi, \xi, \eta, g$) is an LPSM satisfying the *general critical equation, then $\nabla_{\xi} D \lambda=\sigma \xi$.

Proof. Introducing $Y=\xi$ in (25) and using (14), we obtain

$$
\nabla_{\xi} D \lambda=\sigma \xi .
$$

Introducing $Y=\xi$ in (23) and then taking the help of (20) and (21), we get

$$
\begin{align*}
& R(X, \xi) D \lambda \\
= & \lambda\{\hat{S} \phi X-(2 n-1) \phi X-a X-a \eta(X) \xi\}+(X \sigma) \xi-(\xi \sigma) X \\
& -(\xi \lambda)\{\hat{S} X-a \phi X+(2 n-1) X+(4 n-1) \eta(X) \xi\} . \tag{28}
\end{align*}
$$

Next using (15) in (28), we get

$$
\begin{aligned}
& (\xi \lambda) g(X, Z)-(X \lambda) \eta(Z) \\
= & \lambda\{g(\hat{S} \phi X, Z)-(2 n-1) g(\phi X, Z)-a g(X, Z) \\
& -a \eta(X) \eta(Z)\}+(X \sigma) \eta(Z)-(\xi \sigma) g(X, Z) \\
& -(\xi \lambda)\{g(\hat{S} X, Z)-a g(\phi X, Z) \\
& +(2 n-1) g(X, Z)+(4 n-1) \eta(X) \eta(Z)\}
\end{aligned}
$$

which yields

$$
X(\lambda+\sigma)=-\xi(\lambda+\sigma) \eta(X) .
$$

for $Z=\xi$. By taking the help of the above equation in (29), we have

$$
\begin{aligned}
& \{(\xi \lambda)+(\xi \sigma)\}\{g(X, Z)+\eta(X) \eta(Z)\} \\
= & -(2 n-1) \lambda g(\phi X, Z)+\lambda\{\rho(\phi X, Z)-a g(X, Z)-a \eta(X) \eta(Z)\} \\
& -(\xi \lambda)\{\rho(X, Z)-a g(\phi X, Z) \\
(30) \quad & +(2 n-1) g(X, Z)+(4 n-1) \eta(X) \eta(Z)\} .
\end{aligned}
$$

Next, replacing X by ϕX in the foregoing equation we get

$$
\begin{aligned}
& (\xi \lambda) \rho(\phi X, Z)+\{(\xi \lambda)+(\xi \sigma)+a \lambda+(2 n-1)(\xi \lambda)\} g(\phi X, Z) \\
= & \{a(\xi \lambda)+(2 n-1) \lambda\}\{g(X, Z)+\eta(X) \eta(Z)\} \\
(31) \quad & +\lambda\{\rho(X, Z)+2 n \eta(X) \eta(Z)\} .
\end{aligned}
$$

In view of (31) and (30), we obtain

$$
\begin{align*}
& \left\{(\xi \lambda)^{2}-\lambda^{2}\right\} \rho(\phi X, \phi Z) \\
& +\left\{(4 n-1) \lambda(\xi \lambda)+\lambda(\xi \sigma)-a(\xi \lambda)^{2}+a \lambda^{2}\right\} g(\phi X, Z) \\
= & \left\{(2 n-1) \lambda^{2}-(\xi \lambda)(\xi \sigma)-2 n(\xi \lambda)^{2}\right\} g(\phi X, \phi Z) . \tag{32}
\end{align*}
$$

Therefore, we can state the following:
Theorem 3.4. Every LPSM admitting the *-general critical equations reduces to generalized η-Einstein manifolds .

Example 3.5. Let $M^{3}(\phi, \xi, \eta, g)$ be a Lorentzian Para Sasakian manifold with $\left\{e_{1}, e_{2}, e_{3}\right\}$ linearly independent vector fields.

$$
e_{1}=e^{z} \frac{\partial}{\partial x}, e_{2}=e^{z-\alpha x} \frac{\partial}{\partial y}, e_{3}=\xi=\frac{\partial}{\partial z},
$$

where α is non-zero constant. Let us take the Lorentzian metric g as

$$
\begin{aligned}
g\left(e_{1}, e_{1}\right) & =g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=-1 \\
g\left(e_{i}, e_{j}\right) & =0 \text { for } i \neq j .
\end{aligned}
$$

Let η be the one form defined by

$$
g\left(X, e_{3}\right)=\eta(X),
$$

for all X in M. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi e_{1}=e_{1}, \phi e_{2}=e_{2}, \phi e_{3}=0 .
$$

Then from the Koszul's formula for Lorentzian metric g, we can obtain the Levi-Civita connection as follows:

$$
\begin{array}{ll}
\nabla_{e_{1}} e_{3}=-e_{1}, & \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{1}=-e_{3}, \\
\nabla_{e_{2}} e_{3}=-e_{2}, & \nabla_{e_{2}} e_{2}=-\alpha e^{z} e_{1}-e_{3}, \quad \nabla_{e_{2}} e_{1}=\alpha e^{z} e_{2}, \\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0,
\end{array}
$$

Using the above relations, we can easily calculate the non-vanishing components of the Riemann curvature tensor R (up to symmetry and skew-symmetry) and the Ricci curvature tensor ρ as following

$$
\begin{aligned}
& R\left(e_{1}, e_{2}\right) e_{1}=-\left(1-\alpha^{2} e^{2 z}\right) e_{2}, \quad R\left(e_{1}, e_{2}\right) e_{2}=\left(1-\alpha^{2} e^{2 z}\right) e_{1} \\
& R\left(e_{1}, e_{3}\right) e_{1}=-e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} \\
& R\left(e_{2}, e_{3}\right) e_{2}=-\alpha e^{z} e_{1}-e_{3}, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2} \\
& \quad \rho\left(e_{1}, e_{1}\right)=\rho\left(e_{2}, e_{2}\right)=-\alpha^{2} e^{2 z}, \quad \rho\left(e_{3}, e_{3}\right)=-2
\end{aligned}
$$

and the non-vanishing components of ρ^{\star} are

$$
\rho^{\star}\left(e_{1}, e_{1}\right)=\rho^{\star}\left(e_{2}, e_{2}\right)=-\left(1+\alpha^{2} e^{2 z}\right)
$$

Let $\Omega(X, Y)=g(\phi X, Y)$, then the non zero components are

$$
\begin{aligned}
& \Omega\left(e_{1}, e_{1}\right)=g\left(e_{1}, \phi e_{1}\right)=1 \\
& \Omega\left(e_{2}, e_{2}\right)=g\left(e_{2}, \phi e_{2}\right)=1
\end{aligned}
$$

Assuming

$$
\begin{aligned}
& A=\left(1-\alpha^{2} e^{2 z}\right) \\
& B=-\left(1+\alpha^{2} e^{2 z}\right) \\
& C=-1
\end{aligned}
$$

we have

$$
\rho(X, Y)=A g(X, Y)+B \eta(X) \eta(Y)+C \Omega(X, Y)
$$

This implies that the manifold is a generalized η-Einstein manifold under the above considerations.

Next we choose smooth functions λ and σ such that

$$
g\left(\nabla_{e_{1}} D \lambda, e_{1}\right)=g\left(\nabla_{e_{2}} D \lambda, e_{2}\right)=-\left(1+\alpha^{2} e^{2 z}\right) \lambda+\sigma
$$

Suppose $\lambda=z$, so that $D \lambda=e_{3}$ and therefore $\operatorname{Hess}(z)\left(e_{i}, e_{i}\right)=-1$ for $i=1,2$. Therefore, $\left(g, z,\left(1+\alpha^{2} e^{2 z}\right) t-1\right)$ is a solution of the $*$-general critical equation.
4. $L P S M$ admitting the semisymmetric condition $R \cdot C^{*}=0$

In view of (1) and (16), we get

$$
\begin{align*}
& \eta\left(C^{*}(X, Y) Z\right) \\
= & \left(\frac{r^{*}}{2 n(2 n-1)}-1\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
& -\frac{1}{2 n-1}\left[\rho^{*}(Y, Z) \eta(X)-\rho^{*}(X, Z) \eta(Y)\right] . \tag{33}
\end{align*}
$$

Using (22) we obtain

$$
\begin{aligned}
& \eta\left(C^{*}(\xi, Y) Z\right) \\
= & \left(1-\frac{r^{*}}{2 n(2 n-1)}\right)[g(Y, Z)+\eta(X) \eta(Z)]+\frac{\rho^{*}(Y, Z)}{2 n-1},
\end{aligned}
$$

and

$$
\eta\left(C^{*}(X, Y) \xi\right)=0
$$

Suppose the LPSM is *-conformally semisymmetric. Then

$$
R \cdot C^{*}=0
$$

which yields after taking the inner product with ξ

$$
\begin{align*}
& \eta\left(R(\xi, Y) C^{*}(U, V) W\right)-\eta\left(C^{*}(R(\xi, Y) U, V) W\right) \\
& -\eta\left(C^{*}(U, R(\xi, Y) V) W\right)-\eta\left(C^{*}(U, V) R(\xi, Y) W\right)=0 \tag{34}
\end{align*}
$$

In view of (16), the relation (34) becomes

$$
\begin{aligned}
& -g\left(C^{*}(U, V) W, Y\right)-\eta(Y) \eta\left(C^{*}(U, V) W\right) \\
& -g(Y, U) \eta\left(C^{*}(\xi, V) W\right)+\eta(U) \eta\left(C^{*}(Y, V) W\right) \\
& -g(Y, V) \eta\left(C^{*}(U, \xi) W\right)+\eta(V) \eta\left(C^{*}(U, Y) W\right) \\
& -g(Y, W) \eta\left(C^{*}(U, V) \xi\right)+\eta(W) \eta\left(C^{*}(U, V) Y\right)=0 .
\end{aligned}
$$

Next, using (33) the foregoing equation reduces to

$$
\begin{align*}
& C^{*}(U, V, W, Y) \\
& +\left(\frac{r^{*}}{2 n(2 n-1)}-1\right)[g(Y, U) g(V, W)-g(Y, V) g(U, W)] \\
& -\frac{1}{(2 n-1)}\left[\rho^{*}(Y, V) \eta(U) \eta(W)-\rho^{*}(Y, U) \eta(V) \eta(W)\right] \\
& +\rho^{*}(V, W) g(Y, U)-\rho^{*}(U, W) g(Y, V)=0 \tag{36}
\end{align*}
$$

Executing the contraction over U and W, the above equation gives

$$
\begin{equation*}
\rho^{*}(Y, V)=-2 n(2 n-1) g(Y, V), \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{*}=-2 n(2 n-1)(2 n+1) . \tag{38}
\end{equation*}
$$

Therefore we can state
Theorem 4.1. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an LPSM admitting the semisymmetric condition $R \cdot C^{*}=0$. Then the manifold $M^{2 n+1}$ is *Einstein and of constant $*$-scalar curvature $-2 n(2 n-1)(2 n+1)$.

By virtue of (37) and (38), the equation (36) becomes

$$
\begin{aligned}
& R(U, V, Y, W)+(2 n+1)[g(Y, V) g(U, W)-g(Y, U) g(V, W)] \\
& +2 n[g(Y, V) \eta(U) \eta(W)-g(Y, U) \eta(V) \eta(W)]=0 .
\end{aligned}
$$

Using (16) in the above equation, we obtain

$$
\eta(R(U, V) Y)=0 .
$$

Hence

$$
R(U, V) \xi=0,
$$

for all Y in $M^{2 n+1}$.
Thus we can conclude the following:
Theorem 4.2. [8] Suppose $M^{2 n+1}(\phi, \xi, \eta, g)$ be an LPSM admitting the semisymmetric condition $R \cdot C^{*}=0$. Then the manifold $M^{2 n+1}$ is locally isometric to the Riemannian product of a flat ($n+1$)-dimensional Riemannian manifold and an n-dimensional manifold of positive curvature 4 , i.e., $E^{n+1}(0) \times S^{n}(4)$.

Acknowledgements

Authors would like to thank the referees for his/her suggestions to improve the manuscript. The second named author gratefully acknowledges UGC (NTA Ref. No. 211610054686), for financial assistance.

References

[1] K. K. Baishya and P. R. Chowdhury, Semi-symmetry type LP-Saskian manifolds, Acta Math. Acad. Paedagog. Nyiregyhaziensis. 33 (2017), no. 1, 67-83.
[2] K. K. Baishya and M. R. Bakshi, Critical metric equation on α-cosymplectic manifolds, J. Anal. 31 (2023), 871-880.
[3] K. K. Baishya, M. R. Bakshi and A. Biswas, On generalized weakly (Ricci) phisymmetric LP Sasakian manifolds, Novi Sad J Math. 51 (2021), no. 2, 89-105.
[4] K. K. Baishya and P. R. Chowdhury, On almost generalized weakly symmetric LP-Sasakian manifolds, Annals of West University of Timisoara - Mathematics and Computer Science 55 (2017), no. 2, 51-64.
[5] M. R. Bakshi, A. Das and K. K. Baishya, Existence of hyper generalized weakly symmetric Lorentzian para-Sasakian manifold, Acta Universitatis Apulensis 65 (2021), 51-66.
[6] M. R. Bakshi, K. K. Baishya, M. Pain and H. Kundu, Existence of some critical metrics on certain type of GRW-spacetime, submitted.
[7] A. M. Blaga, η-Ricci solitons on LP Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496.
[8] D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324.
[9] A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484.
[10] A. E. Fischer and J. E. Marsden, Deformations of the scalar curvature, Duke Math. J. 42 (1975), no. 3, 519-547.
[11] A. Ghosh and D. S. Patra, *-Ricci soliton within the frame-work of Sasakian and (κ, μ)-contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 7, 1850120.
[12] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci*-tensor, Tokyo J. Math. 25 (2002), no. 2, 473-483.
[13] A. Haseeb and S. K. Chaubey, Lorentzian Para Sasakian Manifolds and $*$-Ricci Solitons, Kragujev. J. Math. 48 (2024), no. 2, 167-179.
[14] S. K. Hui, S. Uddin, C. Ozel and A. A. Mustafa, Warped product submanifolds of LP-Sasakian manifolds, Discrete Dynamics in Nature and Society Vol. 2012, Article ID 868549, doi: 10.1155/2012/868549.
[15] G. Kaimakamis and K. Panagiotidou, On a new type of tensor on real hypersurfaces in nonflat complex space forms, Symmetry 11 2019, no. 4, 559; https://doi.org/10.3390/sym11040559.
[16] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
[17] K. Matsumoto, I. Mihai and R. Rosca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32 (1995), no. 1, 17-31.
[18] P. Miao and L. F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. Partial Differential Equations 36 (2009), no. 2, 141-171.
[19] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical analysis (Kazimierz Dolny, 1991), 155-169, World Sci. Publ. River Edge, NJ, 1992.
[20] A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 49 (2006), no. 2, 193-205.
[21] A. A. Shaikh and K. K. Baishya, On ϕ-symmetric LP-Sasakian manifolds, Yokohama Math. J. 52 (2006), no. 2, 97-112.
[22] A. A. Shaikh, D. W. Yoon, and S. K. Hui, On quasi-Einstein spacetimes, Tsukuba J. Math. 33 (2009), no. 2, 305-326.
[23] A. A. Shaikh, Y. H. Kim, and S. K. Hui, On Lorentzian quasi-Einstein manifolds, J. Korean Math. Soc. 48 (2011), no. 4, 669-689.
[24] T. Pal, S. S. Shukla, and S. K. Hui, v-pointwise bi-slant Lorentzian submersions from LP-Sasakian manifolds, Afrika Mathematika 32 (2021), 1341-1354.
[25] S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. 11 (1959), no. 2, 247-265.
[26] V. Venkatesha, D. M. Naik, and H. A. Kumara, *-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds, Math. Slovaca 69 (2019), no. 6, 1447-1458.
[27] V. Venkatesha and H. A. Kumara, *-Weyl curvature tensor within the framework of Sasakian and (κ, μ)-contact manifolds, Tamkang J. Math. 52 (2021), no. 3, 383-395.
[28] A. Yildiz, U. C. De, and E. Ata, On a type of Lorentzian Para-Sasakian manifolds, Math. Reports 16 (2014), no. 66, 61-67.
M. R. Bakshi

Department of Mathematics, Salesian College, West Bengal, BHARAT.
E-mail: raybakshimanoj@gmail.com
T. Barman

Department of Mathematics, Raiganj University, West Bengal, BHARAT.
E-mail: barmantanushri98@gmail.com
K. K. Baishya

Department of Mathematics, Kurseong College, West Bengal, BHARAT.
E-mail: kanakkanti.kc@gmail.com

[^0]: Received May 15, 2023. Accepted September 29, 2023.
 2010 Mathematics Subject Classification. 53C15, 53C25
 Key words and phrases. generalized η-Einstein, *-Einstein, *-general critical equation, Lorentzian para Sasakian structure.
 *Corresponding author

