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CONFORMAL SEMI-SLANT SUBMERSIONS FROM
LORENTZIAN PARA SASAKIAN MANIFOLDS

SusHIL KUMAR, RAJENDRA PRASAD, AND PUNIT KUMAR SINGH

ABSTRACT. In this paper, we introduce conformal semi-slant submersions
from Lorentzian para Sasakian manifolds onto Riemannian manifolds. We
investigate integrability of distributions and the geometry of leaves of such
submersions from Lorentzian para Sasakian manifolds onto Riemannian
manifolds. Moreover, we examine necessary and sufficient conditions for
such submersions to be totally geodesic where characteristic vector field
¢ is vertical.

1. Introduction

Firstly, the notion of Riemannian submersion between Riemannian mani-
folds was initiated by O’ Neill [22] and Grey [15]. Later, this notion was widely
studied in differential geometry. In particular, Riemannian submersions are
fundamentally important in several areas of Riemannian geometry.

For two Riemannian or semi-Riemannian manifolds (M, ¢1) and (Ms, g2),
let f be a submersion from (M, g1) onto (Ma,gz). Then according to the
conditions on the map f : (My,g1) — (Ms, g2), we have following submersions:

Semi-Riemannian submersions and Lorentzian submersion [9], locally con-
formal Kahler submersions [23], almost Hermitian submersion ([3,25]), almost
contact submersion [18], semi-slant submanifolds of a Sasakian manifold [8],
semi-slant submersion [24], para contact submersion [12], semi-slant submer-
sions from almost product Riemannian manifolds ([4,13]) para contact-para
complex submersion [21], anti-invariant Riemnnian submersion from cosym-
plectic manifolds ([2,14]). The concept of conformal semi-slant submersions
was studied by Akyol [1]. In particular, the Riemannian submersions have
several important applications both in mathematics and in physics because of
their application in supergravity and superstring theories ([17,26]), Kaluza-
Klein theory ([6,16]), Yang-Mills theory [7] etc. On the other hand, the study

Received April 7, 2018; Revised August 17, 2018; Accepted November 5, 2018.

2010 Mathematics Subject Classification. 35C15, 53C22, 53C42, 53C50.

Key words and phrases. Lorentzian para Sasakian manifolds, semi-slant submersion, con-
formal semi-slant submeresion.

(©2019 Korean Mathematical Society

637



638 S. KUMAR, R. PRASAD, AND P. K. SINGH

of Lorentzian para contact manifolds was initiated by K. Matsumoto [19] and
Lorentzian para Sasakian manifold was studied by I. Mihai and R. Rosca [20].

In the present paper, we study conformal semi-slant submersion from Loren-
tzian para Sasakian manifolds onto Riemannian manifolds. The paper is orga-
nized as follows: In the second section, we gather main notions and formulae for
other sections. In the third section, we give the definition of slant submersions
and some results. We also study the integrability of distributions and the ge-
ometry of leaves of vertical distribution. In the fourth section we discuss some
examples on it. Finally, we obtain certain conditions for such submersions to
be totally geodesic.

2. Preliminaries

In this section, we recall main definitions and properties of Lorentzian para
Sasakian manifolds and Lorentzian submersions.

An m-dimensional differentiable manifold M admitting a (1,1) tensor field
¢, a contravariant vector field £, a 1-form 7 is called a Lorentzian para Sasakian
manifold with Lorentzian metric g if they satisfy:

(2.1) P =T1+n®E po&=0,no&=0,

(2:2) n(€) = -1, 9(X, &) = n(X),

(2.3) 9(¢X,0Y) = g(X,Y) + n(X)n(Y), g(¢X,Y) = g(X, ¢Y),
(2.4) Vx€ = ¢X,

(2.5) (Vx@)Y =n(Y)X + g(X,Y)E + 2n(X)n(Y)E,

where V represents the operator of covariant differentiation with respect to the
Lorentzian metric g.
In a Lorentzian para Sasakian manifold, it is clear that

(2.6) rankg =m — 1.
Now, if we put
(2.7) O(X,Y) =0(Y,X) = g(X,9Y) = g(¢X,Y),

then the tensor field ® is symmetric (0,2) tensor field, for any vector fields X
and Y.

Example 1. Let R>™*! = {(z!, 2%, ... o™,y 9%, ..., y", 22l y', 2 € Ri =
1,2,...,m)}. Consider R?™*! with the following structure:

m

m ) b o m 0 m 0 . 0
Xi— 4+Yi—)+2—)=Y Yi— Xin— Yiy' 5~
¢(Z( "oz, + ’ayi) + Bz) ; ' Ox; +ZZ:; " Oy, +; Yo

i=1

1 ) ) ) )
g=—77®n+EZ(de@?dﬂﬁLdyZ@dyz),

i=1
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1 GNP )
=——(dz — ‘dxt =2—.
n=—5(dz ;y v'), £=25-
Then, (Rt ¢,£,1,9) is a Lorentzian para-Sasakian manifold. The vector
fields F; = 28%“ E,ii= 2(% + yi%) and ¢ form a ¢-basis for the contact
metric structure.
Lemma 1. Let (M, $,€,1,g9n) be an m-dimensional Lorentzian para Sasakian
manifold and (N, gn) be an n-dimensional Riemannian manifold. Let f : M —
N be a differentiable map and p € M. Then f is called horizontally weakly
conformal or semi-conformal at p if either df, = 0, or df, maps the horizontal

space " = ((ker fu)p) conformally onto Ty .

The second condition in the above definition exactly is the same as df), is
symmetric and there exists a number x(p) # 0 such that

(2.8) gn (£ X, 1Y) = x(P)gm(X,Y) for X,V € ((ker f.),)*

Here x(p) is called the square dilation of f at p and its square root A(p) =

X(p) is called the dilation of f at p. The map f is called horizontally weakly
conformal or semi-conformal on M if it is horizontally weakly conformal at
every point on M. If f has no critical point, then it is said to be a (horizontally)
conformal Lorentzian submersion [4].

We should mention that a horizontally conformally Lorentzian submersion
f+ M — N is called horizontally homothetic if the gradient of its dilation A is
vertical, i.e.,

(2.9) H(gradX) =0,
at p € M, where H is the complement orthogonal distribution to V = ker f, in
(T, M).

Again, we recall the following definition from [22].

Let f: M — N be a conformal Lorentzian submersion. A vector field F
on M is called projectiable if there exists a vector field E on N such that
fo(Ep) = Ef(p) for any p € M. In this case E and E are called f-related. A
horizontal vector field Y on M is called basic, if it is projectiable. It is a well
known fact that if Z is a vector field on N , then there exists a unique basic
vector field Z which is called the horizontal lift of Z.

The fundamental tensors 7 and A defined by O’Nill’s [22], for vector field
E and F on M such that

(2.10) ApF = HVY L VF + VAL HF,

(2.11) TeF = HVYLVF + VVILHE,

where V and H are the vertical and horizontal projections. On the other hand,
from equations (2.10) and (2.11), we have

(2.12) VoV =ToV +VyV,
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(2.13) Vv X =HVyX +TyX,
(2.14) ViU = AxU + VWU,
(2.15) VxY =HVxY + AxY,

for all U,V € I'(ker ) and X,Y € I'(ker )+, where VWyV = VoV. If X is
basic, then AxV = HVxV.
It is easily seen that for p € M, V € V, and X € H,, the linear operators

Tv,Ax : T,M — T,M
are skew-symmetric, that is
(2.16) g(AxE,F)=—g(E,AxF) and g(TvE,F) = —g(E, Ty F)

for all E,F € T,M. We also see that the restriction of 7 to the vertical
distribution 7 is the second fundamental form of the fibres of f. Since Ty is
skew-symmetric, we get f has totally geodesic fibres if and only if 7 = 0.

Let (M, ¢,£,m,gn) be a Lorentzian para Sasakian manifold and (N, gn) be
a Riemannian manifold. Let f : M — N be a smooth map. Then the second
fundamental form of f is given by

(2.17) (VENX,Y) = VLAY — f.(VxY) for X,Y € T(T,M),

where we denote conveniently by V the Levi-Civita connections of the metrics
gn and gy and V7 is the pullback connection [5]. We also know that, f is said
to be totally geodesic map if (Vf)(X,Y) =0 for X,Y € (T M).

Lemma 2. Let f: M — N be a horizontal conformal submersion. Then, for
any horizontal vector fields X,Y and vertical vector fields U,V , we have

(i) (VA)X,)Y)=X(In AN f.Y +Y(In M) £ X — g (X, Y) fi(gradln N),
(ii) (VLU V) = = f(TuV),
(i) (V)X U) = ~1.(VHD) =  [.(AxD).

3. Conformal semi-slant submersions

In this section, we define and study conformal semi-slant submersion from
Lorentzian para Sasakian manifolds.

Definition 1. Let (M,¢,&,m,gp) be a Lorentzian para Sasakian manifold
and (N, gn) be a Riemannian manifold. A horizontal conformal submersion
fi (M, 0,&,m,9m) — (N,gn) is called conformal semi-slant submersion if
there is a distribution D; C (ker f.) such that

(3.1) ker f, = D, @D2@<§>,¢(D1) = Dy,

and the angle § = 0(X) between ¢X and the space (D3), is constant for non-
zero vector field X € (D3), and p € M, where D1, Dy and (&) are mutually
orthogonal in (ker f,). As it is, the angle 6 is called the semi-slant angle of the
horizontally conformal submersions.
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It is known that the distribution ker f, is integrable. Hence above Definition
1 implies that the integral manifold (fiber) f=1(g),q € N of ker f, is a semi-
slant submanifold. Let f be a conformal semi-slant submersion from Lorentzian
para Sasakian manifold (M, ¢, £, n, gar) onto Riemannian manifold (N, gn). For
U € I'(ker f.), we have

(3.2) U =PU+ QU —n(U),

where PU € T'(D;) and QU € T'(Dy).
For V € I'(ker f,), we have

(3.3) OV =V + wV,

where ¥V and wV are vertical and horizontal components of ¢V respectively.
Also for X € T'(ker f.)*, we have

(3.4) ¢X = BX + CX,

where BX and CX are vertical and horizontal components of ¢.X respectively.
Then, I'(ker f.)* decomposed as

(3.5) [(ker )" = wDy @ p,

where p is the orthogonal complement of wDs in T'(ker f,)* and it is invariant
with respect to ¢.

Let f: (M,0,&,n,90m) — (N,gn) be a conformal semi-slant submersion
from Lorentzian para Sasakian manifold (M, ¢, &, n, gar) onto Riemannian man-
ifold (N, gn). Thus the using equations (2.3), (3.3) and (3.4), we get

(3.6) g (Y X,Y) = gu(X,9Y), gu(U,CV) = gu(CU, V)

for all X, Y € I'(ker7,) and U,V € I'(kerm,)L.
Then the using equations (3.1), (3.3), (3.4) and (3.5), we get

(3.7) YDy = Dy, wD; =0, YDy C Dy, B(I'(ker f,)') = Ds.

Lemma 3. Let (M,$,&,1,g90m) be a Lorentzian para Sasakian manifold and
(N,gn) be a Riemannian manifold. If f : (M, $,§,n,9m) — (N,gn) is a
conformal semi-slant submersion, then

P +Bu=IT4+1nQ¢ w+Cw=0,
YB+ BC =0, wB+C?=1.
We define the co-variant derivatives of ¥ and w as follows:

(3.8) (Vx9)Y = VxY — 9V xY,

(3.9) (Vxw)Y = HVxwY —wVxY
for all X,Y € T'(ker f,), where VxY = VVyY.

Lemma 4. Let (M,$,&,m,g90m) be a Lorentzian para Sasakian manifold and
(N,gn) be a Riemannian manifold. If f : (M,0,&,m,9m) — (N, gn) is a
conformal semi-slant submersion, then
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(1) (Vx¥)Y = BTxY — TxwY —n(Y)X — gu (X, Y)E = 2n(X)n(Y)E,
(Vxw)Y = CTxY — TxvY,
for all X, Y € T'(ker f,).
(2) TxBV + HVxCV = CHVxV 4+ wTxV,
VxBV +TxCV = BHV XV + $VxV,
for X € D(ker f,) and V € T'(ker f.)*.
(3) VWyvX + Ayw = BAy X + ¢ VVy X,
AvwX + HVxwX + ’I7<X)V =CAy X +wVVy X,
for X € D(ker f,) and V € T'(ker f.)*.
(4) AyBV + HVyCU = CHVyV + wAyV,
VVuBV + AyCV = BHVyV + 9y AyV,
for U,V € T(ker f.)*.

Lemma 5. Let f : (M,$,&,1m,9m) — (N,gn) be a conformal semi-slant
submersion from Lorentzian para Sasakian manifold (M, $,&,1,gn) onto Rie-
mannian manifold (N, gn). Then f is a proper conformal semi-slant submer-
sion if and only if there exists a constant A € [0,1] such that

V2X = AX for all X € T'(Dy),
where \ = cos? 6.

Proof. For any non-zero vector field X € I'(D3), we have

x|
3.10 =11
(3.10) st = rax]
and
(8.11) st = X MoxX |

where 6(X) is the semi-slant angle.
Using equations (2.1), (3.3) and (3.11), we get

gM(Xv ¢2X)
(3.12) cosf = MV =)

FX I oX |
From equations (3.11) and (3.12), we have

P2 X = cos? HX.
If A = cos? 6, then
P2X = \X

for X € I'(Ds). O

From Lemma 5 and equations (3.3), (3.4) and (3.6), then we easily have:
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Corollary 1. Let f : (M,$,§,m,9m) — (N,gn) be a conformal semi-slant
submersion from a Lorentzian para Sasakian manifold (M, ¢,&,m, gr) onto a
Riemannian manifold (N,gn). Then

(3.13) g (X, 9Y) = cos? Ogp (X, Y),

(3.14) g (WX, wY) =sin? Ogp (X, Y),

for X, Y € T(Dy).

Lemma 6. Let f: (M,$,&,1n,90m) — (N,gn) be a conformal semi-slant sub-
mersion from a Lorentzian para Sasakian manifold (M, ¢,&,m, g ) onto a Rie-

mannian manifold (N, gn) with the slant angle 0 € [0, 5]. If w is parallel with
respect to V on Do, then we have

ToxX = cos? 0Tx X for X € T(Dy).
Proof. If w is parallel, then from Lemma 4, we have
(3.15) CTxY = TxvY for X, Y € I'(Dy).
Interchanging the role of X and Y, we have
(3.16) CTy X = TypX for X, Y € T'(D3)
Since 7 is symmetric, from equations (3.15) and (3.16), we get
ToxhX = cos? 0Tx X for X € T(Dy). 0
Theorem 1. Let f be a conformal semi-slant submersion from a Lorentzian

para Sasakian manifold (M, ®,&,m, gr) onto a Riemannian manifold (N, gn).
Then the semi-slant distribution Dy is integrable if and only if

%gN((Vf*)(X, OY) = (VLY 0X), [ (V) = gu ($(Vx @Y — Vy$X), V)

for XY € T'(D;) and V € T'(D2).
Proof. Let X,Y € I'(Dy), consider

Vx{gm(Y;€)} = (Vxgm)(Y,€) + 9 (VxY,6) + gu (Y, Vx§).

Since X and Y are orthogonal to &, i.e., gas (Y, &) = gn (X, &) = 0. Hence from
above equation

g (VxY,§) = —gu (Y, Vx§),
using this relation in the equation
gu([X,Y],6) = gm(VxY,§) — gu(Vy X, §),

and from equations (2.4) and (2.7), we have

Now we note that Dy is integrable if and only if g ([X, Y]
§) = 0 and gy ([X,Y],IW) = 0 for X,Y € I'(Dy),V
(ker f,)*. Since ker f, is integrable, then g/ ([X,Y], W)

7V) = Ov gM([X7Y]a
€ I'(Dy) and W €
= 0 and we proved
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above ga([X,Y],€) = 0. Thus, D; is integrable if and only if gy ([X,Y],V) =
0.
Now we show that, from equations (2.3), (2.5), (2.12) and (3.3), we have

gu ([X, Y], V)
= g (Vx oY = Vy o X, ¥V) + gu(HVx¢Y,wV) — gu (HVy X, V).
Since f is a conformal submersion, using equation (2.17), we have

gM([Xv Y],V)

= %gw((vf*)(X ,0Y) = (VL(Y, 0X), fu(wV))

— g ((Vx oY — VydX), V).
Then,

Dy is integrable < %QN((Vf*)(X, 8Y) — (V1Y 0X), fu(wV)
= gu(W(VxoY — Vy¢X),V). 0

Theorem 2. Let f be a conformal semi-slant submersion from a Lorentzian
para Sasakian manifold (M, &,&,m, g ) onto a Riemannian manifold (N, gn).
Then the semi-slant distribution Do is integrable if and only if

TxwY — TywX + ¢(TxwpY — TywyX) € I'(D2)
for XY € T'(Da3).
Proof. Similarly as Theorem 1, we can show
0 ([X,Y],€) =0 for X,Y € I(Dy),

and we note that Do is integrable if and only if g ([X,Y],V) =0, gm ([ X, Y],
&) = 0 and gu([X,Y],W) = 0 for X,Y € I'(D3),V € I'(Dy) and W €
(ker f.)*. Since ker f, is integrable then gn/([X,Y],W) = 0 and we proved
above gy ([X,Y],€) = 0. Thus, D, is integrable if and only if gp ([X,Y], V) =
0.
From equations (2.3), (2.5) and (3.3), we have
= gm(Vx¥Y, V) + gu(VxwY, V) — gu(Vy X, V)
- gM(vaXa V)u
Next, using equation (2.13) and Lemma 5, we have
sin? 0gn ([X, Y], V) = gar (TxwY — Ty wX, V) +gu (O(TxwypY —TywipX), V).
Then,

Dy is integrable <= TxwY — TywX + Y(TxwyY — TywypX) € T(Da2). O
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Theorem 3. Let f be a conformal semi-slant submersion from a Lorentzian
para Sasakian manifold (M, ®,&,m, grr) onto a Riemannian manifold (N, gn).
Then the distribution (ker f,)* is integrable if and only if

13 (98 (T £(CX), L@V) = on (T £(CY), (V)
= gu(VVxBY + AyCY — VVyBX — Ay CY, V)
+ gur(AxBY — Ay BX — CY (In )X + CX(In\)Y
+ 290 (X, CY)gradln A\, wV))
for X, Y € T(ker f,)* and V € T'(ker f.).

Proof. For X,Y € T'(ker f,)* and V € T'(ker f,), using equations (2.3), (2.5),
(2.14), (2.15), (3.3) and (3.4), we get
gu([X, Y], V) = gu(VxBY, V) + gu(VxCY,¢V) — gu(Vx BY, ¢V)
—9u(VxCY,¢V) = n(V)gu ([X, Y], €)
= gu(VVxBY + AxCY —VVyBX — Ay CY, V)
+ 9gu(AxBY,wV) + gy (HV xCY,wV) — gy (Ay BX, wV)
—gu(HVyCX,wV) = n(V)gu ([X, Y], §).

Since f is a conformal semi slant submersion and using equation (2.17) and
Lemma 2, we get

gu([X, Y], V)
= gu(VVxBY + AxCY — VVyBX — Ay CY, V)

+ 5598 (VxLCY), £ (V) = 3508(Vy £.(CX), £ (V)

+ SN (AXBY ), L@V) = 308 (Ay BX), £.(V))

— SN (XA £.(CY) + OY (n X) f.(X)
—gm (X, CY) fu(gradln ), fo(wV))

+ %gN(Y(ln MNf(CX)+ CX(In M) f.(Y)

—gu (Y, CX) fu(gradin A), fu(wV)) = n(V)gum (X, Y], ),

= gu(Y(VVxBY + AxCY — VVyBX — AyCY), V)
+ gu(AxBY — Ay BX — CY(In )X + CX(In\)Y

1
+ 290 (X, CY)gradln \,wV) + ﬁgN(VXf*(CY), fe(wV))

— SN Ty £ (OX), fulwV). 0
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Theorem 4. Let [ be a conformal semi-slant submersion from a para Sasakian
manifold (M, ®,&,m, grr) onto a Riemannian manifold (N, gn). Then any two
conditions below imply the third:

(i) (ker f.)* is integrable.
(ii) f 4s a horizontally homothetic map.
() 35 low (Vv (CX), @V ) — gn (/o (CY), £V )}
= gu(VVxBY + AyCY — VVyBX — Ay CY, V)
+9gum(AxBY — Ay BX,wV))
for X,Y € T'(ker f,)* and V € I'(ker f.).
Proof. From equation (3.18), we have
gu([X, Y], V) = gu(p(VVxBY + AxCY —VVyBX — AyCY),V)
+ g (AxBY — Ay BX —CY(In\)X + CX(In\)Y
)

1
+ 290 (X, CY)gradln A, wV) + pgN(VXf*(CY , fe(WV)

— SN (Ty £ (CX), £ (V)
for X,V € T'(ker f,)* and V € T'(ker f.). Now, if we have (i) and (iii), then we
have
(3.18) gu(gradln X, CY)gn (X, wV)
= gu(gradln A\, CX)gp (Y, wV) 4+ 290 (X, CY)grr(gradIn A, wV).
Now, putting Y = wV for V € I'(D5) in equation (3.19), we have
gu(gradln X, CX) gy (wV,wV) = 0.

Thus, A is a constant on I'(i). On the other hand, taking Y = CX for X € I'(u)
in equation (3.19), we get

200 (X, C?X)grr (gradIn N, wV) = 29 (X, X)gar(gradin \,wV) =0. O

Theorem 5. Let f be a conformal semi-slant submersion from a para Sasakian
manifold (M, $,&,n,gun) onto a Riemnnian manifold (N, gn). Then the distri-
bution (ker f) is a totally geodesic foliation on M if and only if

1
1292(Vov f-(6CX), fu(wU))
= g (W(VuV + TowV), X) + gur(To bV, CX) — gar (Auy ¢C X, 9U)
+ gu (WU, wV)gun (gradn X, ¢CX) +n(V)gn (U, BX)
for U,V € T'(ker f.) and X € T'(ker f.)*.

Proof. For U,V € T'(ker f.) and X € T'(ker f,)*, using equations (2.3), (2.5),
(3.3) and (3.4), we get

g (VuV, X) = gu (Vo V, BX) + gu (VowV, BX) 4+ gu (Voo V, CX)
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Since f is a conformal submersion, using equations (2.12), (2.13), (2.17) and
Lemma 2, we get

g (VuV, X)
= gu(W(VuV + TowV), X) + gu(TopV, CX)

~ gulAWCX, V) = 1508 (Vv fo(6CX), (1))

+ 1gon @V (AL (6CX) + 6OX (). (V)

— g WV, 9CX) fi(gradln N), f.(wU)) + n(V)gr (U, BX).
Hence we have
(3.19) g (VoV, X)

= gu(w(VuyV + TowV), X) + gur(TowV, CX)

1
- gM(AwV¢OX7 d)V) - FQN(vaf*(QsCX), f* (WU))
+ g (WU, wV)gpr (Hgradln A, oCX ) + n(V)ga (U, BX). O
Theorem 6. Let f be a conformal semi-slant submersion from a para Sasakian

manifold (M, $,£,1,gnm) onto a Riemannian manifold (N, gn). Then, any two
conditions below imply third:

(i) ker fi is a totally geodesic foliation on M,
(ii) A is a constant on T'(Dy),

() 550w (Vav £1(60X), fu(w))
= — gu(C(VuoV + TuwV), X) + gu (TowV, CX)

- gM(AqusCXva)
for U,V € T(ker f.) and X € T'(ker f,)*.

Proof. From equation (3.19), we have

g (VoV, X) = gu(w(VuoV + TowV), X) + gu (TuwV, CX)

~ Ul AW CX, V) = 1308 (Vv fo(6CX), (1))
+ gy (WU, wV)gpr (Hgradln A, 9CX) + n(V)gn (U, BX)

for U,V € T'(ker f,) and X € I'(ker f.)*. Now, if we have (i) and (ii), then we
obtain

g (Vo V, X) = gu(w(VuV + TowV), X) + gu (TupV, CX)

— g Ay OX, 0V = 500 (Vur £ (6CX), fwD)
+(V)gu (U, BX).
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From above equation, we get (iii). Similarly, one can obtain the other asser-
tions. 0

Definition 2 (Totally geodesicess of the conformal semi-slant submersions).
At this part, we shall examine the totally geodesicess of conformal semi-slant
submersion. First, we give necessary and sufficient condition for a conformal
semi-slant submersion to be totally geodesic map. Remember that a smooth
map f from a para Sasakian manifold (M, ¢, &, n, gar) onto a Riemnnian mani-
fold (N, gn) is called totally geodesic if (V f,)(X,Y) = 0 for any X, Y € T'(T'M)
([10,11]).

Theorem 7. Let f be a conformal semi-slant submersion from a para Sasakian
manifold (M, $,&,n,gnm) onto a Riemnnian manifold (N,gn). Then, f is a
totally geodesic map if

Vzf(Ya) = fu(C(AzYY1 + HV zwY1 + Az BYy + V CY5))
+ w(VVZ¢Y1 + AzwY] + VYV BYs + AZCYQ)

for any Z € T'(ker f.)t and Y =Y, + Yy € (T M), where Y; € U(ker f.) and
Y, € T(ker f,)*.

Proof. For Z € T'(ker f,)* and Y =Y} + Yo € T(TM), where Y; € T'(ker f,)
and Ya € I'(ker f.)+, from equations (2.1), (2.5), (2.17), (3.3) and (3.4), we get
(VI)(Z,Y)
=V2fY) = £((8° —n @ E)(V2Y)),
= Vz2fi(Y) = fi(d(V29Y1 + VzwY1 + VzBY,; + VCY3)
+1(V1)pZ = n(VzY)E).
Again, using equations (2.12), (2.13), (2.15), (3.3) and (3.4), we obtain
(VI)(Z,Y)
= Vz£(Y) = fi((BAzYY1 + CAzYY1 + 0VV 291 + wVV z0Y)
+ BHV zwY, + CHV zwY1 + Y AzwY, + wAzwY, + BAZzBY,
+ CAzBY; + YVV zBY2 + wVV 2z BYs + BHV ;CYs + CHV zCY3
+ Y AzCYs + wAZCYs) +n(Y1)BZ +n(Y1)CZ — n(VzY)E).

Thus taking into account the vertical parts, we get

(VINZ,Y)=Vzf(Y) = fu(C(AzYY1 + HV zwY7 + Az BYs + HV zCYs)

+W(VVZ¢Y1 + AzwY; + VYV BYs + wAZCYg) + ’I](Yl)CZ)
O

Theorem 8. Let f be a conformal semi-slant submersion from a Lorentzian
para Sasakian manifold (M, $,&,m,gn) onto a Riemnnian manifold (N, gn).
Then, f is a totally geodesic map if and only if
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(i) %{QN((Vf*)(U»wwV),f*(Z))—gN(vaf*(wU)»f*@CX))}
= gu(TuwV, BZ) — gu (AuvypU, ¢CZ)
—AgM(gradln)\7wV)gM(wU, $»CZ),
(i) gv(Vu,0Vh, BZ) = gy (Ty, CZ, V1),
() g lon (VE)W,CX), £.CV)) + gn(V£)(W,wBX), £.(V)))

= gu(Tw¥BX,Y) + g (TwCX, BY ),
(iv) f is a horizontally homothetic map, for Uy, V4 € I'(Dy), U,V € T'(Ds),
W e D(ker f,) and X,Y,Z € T(ker f.)*.

Proof. (i) For U,V € T'(Dy) and Z € T'(ker f,)*, using equations (2.3), (2.5),
(2.8), (2.17) and (3.3), we get

N (VE)UV), £.(2)

= —gu(Vuv*V, Z) — gu(VowdpV, Z) — gy (VowV, ¢ Z).

From equations (2.3), (2.5), (2.13), (3.4) and Lemma 5, we get
. 1
sin? 0558 (V12)(U,V), £+(2))
= —gu(HVywyV, Z) — gu(TowV, BZ) + gu (Vv oU, ¢CZ).
Since f is a conformal submersion, using equation (2.17) and Lemma 2, we get
) 1
sin 0593 (V£)(U, V), .(2)
1
= —gu(TuwV,BZ) + FQN((Vf*)(UMde%f*(Z))

+ 9u (AW, 6CZ) + 3503 (Vv (D), £.(6C2)
— g WV (In ) fu(wU) + wU(In A) fi (wV)
— gm (WV,wU) fu(gradln N), f.(¢CX)).
Hence, we get
sin? 050w (V1.)(U,V), £.(2))
= — gu(TowV, BZ) + 5w (V1)U w0V), £.(2))

1
+ gn WV, wU)gpr(gradIn X, gC X).
(ii) For Uy, V; € D(ker f,)*, using equations (2.3), (2.5), (2.8), (2.17) and
(3.3), we get

N (VL)L V). £(2)) = ~0s (Vi 6Vi, BZ) — gu(Vur, V4, O2).
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Again using equations (2.12) and (2.13), we get

N (VL)L V1), £.(2)) = ~g(Fu, Vi, BZ) + g2 9V, TiC2)
(iii) For W € T'(ker f.) and X,Y € T'(ker f.)*, using equations (2.3), (2.5),
(2.8) and (2.17), we get
BN (VL) Y, £.0V)) = —gai (VoY 0W).
Again using equations (2.3), (2.5), (3.3), (3.4), (2.12) and (2.13), we get

on (VL)W X), £.(Y)) = — gu(TwtBX,Y) ~ gas (TwCX, BY)
— g (HVwwBX,Y) — gy (HVwCX,CY).

Since f is a conformal submersion and using equation (2.17), we have

égN((w*xW, X), £.(Y))
= —gu(Tw¥BX,Y) — gu(TiwCX, BY)

+ %{QN((Vf*)(W?wBX),f*(Y)) —gn((V£)(W,CX), f(CY))}.
(iv) X1, X5 € T'(p), from Lemma 2, we have
(V) (X1, X2) = Xa(InA) fu(X2) + Xo(In A) 4 (X1) — g (X1, X2) fu(gradIn A).
From above equation putting X» = ¢X; for X7 € I'(), we get
(V) (X1, ¢X1)
= X1(In M) £ (¢X1) + ¢ X1 (In A) £ (X1) — gar (X1, ¢X1) fi(gradin A),
= X1(In ) fe(¢X1) + ¢ X1 (In A) £, (X1).
If (Vf)(X1,6X1) =0, the we have
(3.20) X1(In ) fe(6X1) + X1 (In ) fu(X7) = 0.

Taking inner product in equation (3.20) with f.(¢X;) and since f is a conformal
submersion, we have

T2 {on(oradIn X, X0)gw (1.(6X4), £.(6X1))
+ gm(gradin X, 9 X1)gn (fi(X1), fx(¢X1))} = 0.

From above equation, it follows that A is a constant I'(x). In similar way, for
Us, Vo € T'(ker f,), using Lemma 2, we have

(V) (wUz, wV2)
= wls(In N) fo (WVa) + wVo(In A) fu(wUs) — gp (wU2, wVa) fu(gradln X).
From above equation putting Vo = Uy, we have

(3.21) (V1) (wUsz,wVs)
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= 2wUs(In N) fu (wU2) — gar (wUs2, wUs) fu(gradln X).

Taking inner product in equation (3.21) with f.(wUs) and since f is a conformal
submersion, we get

gn (U2, wUs)gar(gradln A, wUs) = 0.

From above equation, it is follows that A is a constant on I'(w(ker f.)). So A is
a constant on I'(ker f,)*. On the other hand, if f is a horizontally homothetic
map, it is obvious that (Vf,)(X,Y) = 0. O

Definition 3. Let f be a conformal semi-slant submersion from a Lorentzian
para Sasakian manifold (M, ¢,&,n,ga) to a Riemannian manifold (N, gn).
Then f is called a (wDs, u)-totally geodesic map if

(VAWV, X)=0
for Ve I'(D3) and X € T'(p).

Theorem 9. Let f be a conformal semi-slant submersion from a Lorentzian
para Sasakian manifold (M, ®,&,m, grr) onto a Riemannian manifold (N, gn).
Then, f is called a (wDs, p)-totally geodesic map if and only if [ is horizontally
homothetic map.

Proof. For U € T'(D3) and X € I'(u), from Lemma 2, we get
(Vi) (wU, X) =wU(nA) fo(X) + X(InA) fu(wU) — g (WU, X) fu(gradln N).

If f is a horizontally homothetic, then (Vf,)(wU,X) = 0. Conversely if
(V) (wU, X) =0, we get

(3.22) wU(In ) fo(X) + X(In N) f (WU) = 0.
Since f is a conformal semi-slant submersion and taking inner product in equa-
tion (3.22) with f.(wU), we get
gu (WU, wl) gy (gradln A, X) = 0.
Above equation implies that A is constant on I'(u).

Again, since f is a conformal semi-slant submersion and taking inner product
in equation (3.22) with f.(X), we get

g (X, X)gnr(gradln A, wU) = 0.

From above equation, it follows that A is constant on I'(wDs). Thus, A is a
constant on I'(ker f,)*. O

Theorem 10. Let f be a conformal semi-slant submersion from a Lorentzian
para Sasakian manifold (M, ¢,&,m,gnm) onto a Riemnnian manifold (N, gn).
Then f is a totally geodesic map if and only if

(a) CTo, Vi +wVy,wVi =0 for Uy, Vi € T(Dy),

(b) C(TU1¢U2 + »AngUl) + w(VU1¢U2 + TUI(JJUQ) =0 for U; € F(Dl),
U, € F(Dg),
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(C) C(TuBX + AcxU) +w(VyBX + TuCX) =0 for U € T(ker f,), X €
[ (ker f,)*.

Proof. For Uy, Vy € T'(Dy,), from equations (2.1), (2.5), (2.17) and (3.3), we
get

(VU V1) = = fi(o(Vu, Vi) = n(Vi, V1)E).
Next, from equations (2.12), (3.3) and (3.4), we get
(V1) (Ui, V1)
= — [(BTo, ¥V + CTu ¥V + ¥V, Vi + wVp, oVi — (Y, V1)E).
Since BTy, Vi + ¥V u, ¥Vi — (Y, Vi)€ € D(ker f.), we have

(VE)(UL W) = = f(CTo, Vi + wV Y Wh).

Then, since f is a linear isomorphism between (ker f,)~ and TM, (V£.)(U1, V1)
=0 (CTy,Y¥Vi + wVy, Vi) = 0.
(b) For Uy € I'(Dy), Uz € I'(D3), from equations (2.1), (2.5), (2.17) and
(3.3), we get
(V1) (U1, Uz) = = f(¢V 0, Uz + ¢V, wUz — n(Vu, U2)8).
Again using equations (2.12), (2.13), (3.3) and (3.4), we get
(VI (UL, Uz) = — f(BTo,¥Us + CTr, Us + 9N 1, Y Us + wVp, v Us
+ BAuu, Ui + C AL, Ur + ¢ Tu,wlUs + wTy,wls
—n(Vu,U2)§).
Since BTUl'l/)UQ + ¢§U1¢UQ + B.A‘,.,U2 Ui+ ’L/)TUleQ - 77(VU1 Ug)g S F(ker f*),
we have
(V£)(U1,U2) = = fo(C(Ty, YUs + Awtr,Un) + w(Vu, Us + T, wls)).

Since f is a linear isomorphism between (ker f,)* and TN, (Vf,)(U1,Us) =
0 & C(To,YUs + Awv,Ur) + w(Vy, ¥Uz + Ty, wUsz) = 0.
(c) For U € T'(ker f,) and X € T'(ker f,)*, from equations (2.1), (2.3), (2.17)
and (3.4), we obtain
(VLU X) = = f(¢(VuBX + VyCX) — n(Vu X)§).
Using equations (2.12), (2.13), (3.3) and (3.4), we have

(V)(U, X) = — f.(BTuBX + CTyBX +¢VyBX +wVyBX
+YTyCX + wTyCX + BAyCX + CAUCX) — ’I](VUX)g)

Since BTy BX + ¢VyBX + ¢ TyCX + BAyCX —n(VyX)€ € D(ker f.)*, we
have

Since f is a linear isomorphism between (ker f,)* and TN, (V£.)(U,X) =
0 C(TuBX + AyCX) +w(VyBX + TyCX) =0. O
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4. Examples

Note that given an Euclidean space R?™*! with coordinates {(z!,?,...,

™yt y? . y™ 2) - 2ty z € R}. Consider the base field {E;, Ey, 4, &}
where E; = %,Emﬂ = % + yi% and contravariant vector field £ = %.

Define Lorentzian almost para contact structure on R*™+1 as follows:

m 6 a a m a m a m ; 8
o Xigg +Yig) +250) = —;Yiaxi - ;Xia—yi + ;Yy 5

=1

n=—(dz— Zyidxi),
i=1

g=-non+ () _di'®@ds'+) dy' @ dy").
=1 =1

Then (R?™*1 ¢,&,n, g) is Lorentzian para Sasakian manifold.

Example 2. Every semi-slant submersion from Lorentzian para Sasakian man-
ifold to a Riemannian manifold is a conformal semi-slant submersion with
A = I, where I denotes the identity function. We say that a conformal semi-
slant submersion is proper if A # [.

Example 3. Consider the Euclidean space R with coordinates (z',z?2, 23,

y', 92, 4%, 2) and base field {E;, E3,;,&} where E; = -2 Es,; = % + yi%,

aiyz',a
i =1,2,3 and contravariant vector field £ = %. Define Lorentzian almost para
contact structure on R7 as follows:
3 3 3 3
0 0 0 0 0 .0
(b(;( 8m’+ 8y1)+ az) ; or? ; 6yl+i§::l Y52
0
5 - %a
3 . .
n=—(dz=) y'da'),
i=1
3 3

g=-non+ () _di'®@ds’+) dy' @ dy").
=1 =1

Then (R7, $,£, 7, g) is Lorentzian para Sasakian manifold.
Let F be a submersion defined by

F:R”— R?

1,2 ,.3.1,.2 3 L 3 oyt 3
F(I 7I )z 3y ?y 7y 72):(6y Cosy 7ey Slny )7
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where y* € R — {k%,kn}, k € R. Then it follows that

and

ker F, = span{Vy = 0x*, Vo = 0x* Vs = 0%,V = 0y, V5 = 0z}

(ker F.)* = span{X, = ev' cos yPoy' — e¥' sin y2 oy,
Xy = e¥ sin yioyt + ¥ cos y2oyY.

Hence, we have

1 1
?(F*XhF*Xl) = (ey )2g(X17X1)a§<F*X2aF*X2) = (ey )29(X27X2)7

where g denote the standard metric (Euclidean metric) on R?. Thus F is a

. . . 1
conformal semi-slant submersion with A = e¥ .
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