• Title/Summary/Keyword: Loop Bandwidth

Search Result 322, Processing Time 0.035 seconds

LQR control of Wind Turbine (풍력터빈의 LQR 제어)

  • Nam, Yoon-su;Jo, Jang-whan;Lim, Chang-Hee;Park, Sung-su;Bottasso, Carlo L.
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

A Study on Single-bit Feedback Multi-bit Sigma Delta A/D converter for improving nonlinearity

  • Kim, Hwa-Young;Ryu, Jang-Woo;Jung, Min-Chul;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.57-60
    • /
    • 2004
  • This paper presents multibit Sigma-Delta ADC using Leslie-Singh Structure to Improve nonlinearity of feedback loop. 4-bit flash ADC for multibit Quantization in Sigma Delta modulator offers the following advantages such as lower quantization noise, more accurate white-noise level and more stability over single quantization. For the feedback paths consisting of DAC, the DAC element should have a high matching requirement in order to maintain the linearity performance which can be obtained by the modulator with a multibit quantizer. Thus a Sigma-Delta ADC usually adds the dynamic element matching digital circuit within feedback loop. It occurs complexity of Sigma-Delta Circuit and increase of power dissipation. In this paper using the Leslie-Singh Structure for improving nonliearity of ADC. This structure operate at low oversampling ratio but is difficult to achieve high resolution. So in this paper propose improving loop filter for single-bit feedback multi-bit quantization Sigma-Delta ADC. It obtained 94.3dB signal to noise ratio over 615kHz bandwidth, and 62mW power dissipation at a sampling frequency of 19.6MHz. This Sigma Delta ADC is fabricated in 0.25um CMOS technology with 2.5V supply voltage.

  • PDF

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ-Δ Fractional-N Frequency Synthesizers

  • Chen, Zuow-Zun;Lee, Tai-Cheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • A multiphase compensation method with mismatch linearization technique, is presented and demonstrated in a $\Sigma-\Delta$ fractional-N frequency synthesizer. An on-chip delay-locked loop (DLL) and a proposed delay line structure are constructed to provide multiphase compensation on $\Sigma-\Delta$ quantizetion noise. In the delay line structure, dynamic element matching (DEM) techniques are employed for mismatch linearization. The proposed $\Sigma-\Delta$ fractional-N frequency synthesizer is fabricated in a $0.18-{\mu}m$ CMOS technology with 2.14-GHz output frequency and 4-Hz resolution. The die size is 0.92 mm$\times$1.15 mm, and it consumes 27.2 mW. In-band phase noise of -82 dBc/Hz at 10 kHz offset and out-of-band phase noise of -103 dBc/Hz at 1 MHz offset are measured with a loop bandwidth of 200 kHz. The settling time is shorter than $25{\mu}s$.

The Design and Implementation of MCPA for IMT-2000 using Feedforward Linearization (Feedforward 선형화 기법을 이용한 IMT-2000용 MCPA의 설계 및 제작)

  • 노상연;정성찬;정종한;박명석;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.99-106
    • /
    • 2001
  • In this paper, an 1-Watt amplifier for IMT-2000 was designed and fabricated using feedfarward method which has the highest linearity and wide bandwidth. Since feedforward is sensitive to surroundings for example heat, input power level, time and so on, adaptive controller using micro controller is adopted. We fabricated a HPA with 35 dB gain, 40 dBm of 1-dB compression point, and utilized variable attenuator and variable phase shifter using reflection type to cancel loop signal. From the measured results, the fo11owing facts were obtained, in signal loop, main carrier over 35 dB was suppressed and error signal over 30 dB is cancelled in error loop, IMD characteristics above 60 dBc were obtained.

  • PDF

Design of a Modified Alford Loop Antenna for On-Body Devices (인체 부착형 기기를 고려한 변형된 Alford 루프 안테나 설계)

  • Park, Joongki;Lee, Juneseok;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • In this paper, a modified Alford loop antenna for on-body communication system is proposed. The proposed antenna operating in the ISM band is designed with consideration of human body effect. One of advantages of the Alford loop antenna structure is low-profile, however the Alford loop antenna is not suitable for on-body devices since it does not have a ground plane for other electronic part of on-body system and requires balanced feeding structure. To be embedded on on-body devices, the proposed antenna is design with the unbalanced feed structure and ground. The performance of the proposed antenna is simulated and measured when it is placed on the human body phantom to consider the effect of the human body. The proposed antenna a 10 dB return loss bandwidth over the ISM band and monopole-like radiation pattern with low-profile. The antenna has the surface of appropriate for on-body communication environment.

PD controller design for Micro Gyroscope and Its Performance Test (마이크로 자이로스코프를 위한 PD 제어기 설계 및 성능시험)

  • Sung, Woon-Tahk;Song, Jin-Woo;Lee, Jang-Gyu;Kang, Tae-Sam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.47-56
    • /
    • 2005
  • This paper presents a performance improvement result with the aid of closed feedback controller loop to a micro gyroscope. The dynamic model of a micro gyroscope is derived and a conventional proportional and derivative controller is designed via frequency domain analysis. The proposed control loop is implemented using several analog devices and applied to the SNU-Bosch MEMS gyroscope to check its performance improvement in real environment. The experiments demonstrated the performance improvement with the proposed feedback control loop. The bandwidth, linearity, and bias stability are improved to 78 Hz, 0.504 %, and 0.043 deg/sec, respectively, from 35 Hz, 2.07 %, and 0.066 deg/sec of open loop system.

Performance of space -time coding for four transmit antennas on Rayleigh fading channel (4개의 송신 안테나를 사용하는 5-T 방식의 Rayleigh fading에서의 성능)

  • 이은옥;이혁재
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.41-44
    • /
    • 2002
  • Alamouti proposes a two branch transmit diver-sity scheme that provides the same diversity order as maximal ratio combining at the receiver. It has many advantages of no bandwidth expansion, not requiring channel information at the transmitter and simple maximum likelihood decoding at the receiver. Papadias and Foschini extend this sch-eme to four transmit antennas and suggest several schemes to decrease the interference component and allow the attainment of the open-loop capacity. This paper shows the performance of ZF and MM-SE schemes comparing with ideal case on 4xl sy-stem over BER and 10% outage capacity.

  • PDF

Model Predictive Voltage Control for Seamless Transfer of DC-DC Converters in ESS Applications

  • Le, Duc Dung;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.369-370
    • /
    • 2017
  • In this paper, a model predictive voltage control (MPVC) for the DC-DC buck-boost converters is proposed. It provides a fast seamless bidirectional control method to maintain the DC grid voltage, battery voltage and current within predefined limits. In addition, an inner current control loop is not employed, so that the bandwidth of controller can be higher compared with the PI controller.

  • PDF