• Title/Summary/Keyword: Long-term thermal stress

Search Result 60, Processing Time 0.033 seconds

Investigation of the thyristor failure mechanism induced by stress (Thyristor 소자의 스트레스에 따른 소자파괴 메커니즘 연구)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Sang-Cheol;Kang, In-Ho;Kim, Nam-Kyun;Kim, Ein-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.129-130
    • /
    • 2005
  • The electrical stress has a major effect on the long-term reliability of the thyristor. Therefore, it is needed to analyze the relationship between reliability and stress. In this paper, we investigate the device failure mechanism which induced by the stress. And also investigate the effect of the thermal stress on the device failure and relationship between electrical and thermal stress. Two-dimensional process simulator ATHENA and device simulator ATLAS are used to analyze the failure mechanism of the device.

  • PDF

Effects of Long-term Thermal Stress on the Mouse Serum Concentrations of Dehydroepiandrosterone Sulphate (DHEAS) (장기 고온스트레스가 마우스 혈청 Dehydroepiandrosterone Sulphate(DHEAS)농도에 미치는 영향)

  • 최형송
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.249-254
    • /
    • 2000
  • This study was carried out to investigate the possibility of dehydroepiandrosterone sulphate(DHEAS) as a stress hormone. Experiment 1) We evaluated the variation of DHEAS levels of long-term(30minutes a day fur 3 weeks) 37$^{\circ}C$ thermal stressed mice compared with that of cortisol. Serum concentrations of cortisol and DHEAS were measured by radioimmunoassay(RIA). Cortisol levels were not significantly altered both LW(Long-term stressed group, mice were killed without rest) and LR(Long-term stressed group, mice were killed after 4 days' rest) compared with control group, but DHEAS levels were decreased in LW compared with control group(p<0.05), and it kept a sustained difference after 4 days' rest(LR)(p<0.05). Experiment 2) We evaluated the changes of DHEAS levels on term of stress and rest. As stress term was longer, serum DHEAS levels were decreased and also kept a sustained difference after 10 days' rest compared with control group(p<0.05). These results suggest that cortisol has difficulty in taking an accurate measurement after extinction of stimuli, whereas DHEAS is more accurate and stable. Thus, this study implies that DHEAS is a stress-related hormone.

  • PDF

Study on Long-term Deterioration Properties of Porcelain Insulators with Aluminous System (알루미나계 자기애자의 장기 피로특성에 관한 연구)

  • Han, Se-Won;Cho, Han-Goo;Lee, Dong-Il;Cho, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.562-563
    • /
    • 2005
  • In case of aged porcelain, the failure in basic performance tests happened in cool-heat tests. Based on this characteristic, we studied the method predicting failure phenomena through more severe accelerated cool-heat ageing and accelerating thermal mechanical performance tests. Test results indicated that the thermal stress by temperature gradient was more severe parameter than thermal stress by quenching cycles within a category of standard or accelerating methods. And there is no the deterioration of statistic strength, but the deterioration of strength according to accelerating tests is serious.

  • PDF

Effect of long-term thermal aging on the microstructural and mechanical characteristics of nickel-based alloy weldment (니켈계 합금 용접부의 미세조직 및 기계적 특성에 대한 장기 열적 시효의 영향)

  • Yoo, Seung Chang;Ham, Junhyuk;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • To investigate the effect of long-term thermal aging on the microstructural and mechanical characteristics of weldment made of nickel base alloy and its weld metal, an accelerated heat treatment was applied to simulate the process of long-term thermal aging in the operating condition of nuclear power plant. A representative nickel-based weldment with Alloy 600 and Alloy 182 was fabricated and heat-treated at $400^{\circ}C$ for 1,713 h and 3,427 h to simulate the thermal aging for the period equivalent to 15 and 30 years in operating pressurized water reactors, respectively. The microstructural and mechanical characteristics were analyzed by using optical microscopy, scanning electron microscopy and Vickers microhardness measurement. Changes were observed in precipitation behavior and microhardness of each specimen, and these changes were mainly attributed to the change in precipitated morphology and residual stress across the weld during the thermal aging process.

Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes (팔라듐 합금 수소분리막의 내구성 향상)

  • Kim, Chang-Hyun;Lee, Jun-Hyung;Jo, Sung-Tae;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

Effects of Long-term Heat Exposure on Adaptive Mechanism of Blood Acid-base in Buffalo Calves

  • Korde, J.P.;Singh, G.;Varshney, V.P.;Shukla, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.742-747
    • /
    • 2007
  • In order to investigate the mechanism of adaptation to long-term heat stress, six female buffalo calves of about 7 to 8 months age, were exposed to the cool-comfort environment (THI 65) for 21 days to obtain normal values of blood acid-base. An adaptive response of acid-base regulation was determined to long term (21 days) exposure of buffalo calves to hot-dry (THI 80) and hot-humid (THI 84) conditions. Higher rectal temperature and respiratory rate was recorded under hot-humid exposure compared to hot-dry. Significant reduction in the rectal temperature and respiratory rate on day 21 of hot-dry exposure indicated early thermal adaptation compared to hot-humid. Decreasing rectal temperature and respiratory rate from day 1 to 21 was associated with concurrent decrease in blood pH and pCO2. Increased plasma chloride concentration with low base excess in blood and in extracellular fluid suggested compensatory response to respiratory alkalosis. Reduced fractional excretion of sodium with increased fractional excretion of potassium and urine flow rate indicated renal adaptive response to heat stress.

Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister (심지층 고준위 핵폐기물 처분용기의 열응력 해석)

  • 하준용;권영주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

A study on the long-term stability of dye-sensitized solar cells with different electrolyte systems

  • Bang, So-Yeon;Gang, Tae-Yeon;Lee, Do-Gwon;Kim, Gyeong-Gon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.320-320
    • /
    • 2010
  • The dye-sensitized solar cells (DSSCs) have achieved so far the highest validated efficiency over 11%. However, the cells with the best performance utilize volatile solvent as a electrolyte, which can cause some practical limitations for the long-term operation. This is one of the most substantial problems to be resolved for the commercialization of DSSCs. In order to improve the long-term stability, many research groups have reported new electrolyte system, to replace the liquid type electrolyte by non-volatile ones. In this work, we studied long-term stability of the DSSCs with various types of electrolytes such as (PVDF HFP) based polymer, eutectic melts of ionic liquids, and liquid based solvent. The cells with various electrolytes have been exposed to the condition under thermal stress and illumination over 1000 hours. We will report the change of photovoltaic properties with time and investigate the degradation mechanism with the impedance spectroscopic analysis.

  • PDF

Analysis of residual thermal stress in an aluminosilicate core and silica cladding optical fiber preform

  • Shin, Woo-Jin;K. Oh
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.214-215
    • /
    • 2000
  • As silica based optical fibers and preforms are processed at a high temperature, residual stresses are bulit in the strucure when cooled down to the room temperature. The magnitude of the residual stress depends on the difference in the thermal expansion coefficients between core and cladding glass as well as on the temperature difference. Residual stress distribution determines the intrinsic strength and could affect the long term reliability of optical fibers. And furthermore, stress can introduces anisotropy into optical fibers by photoelastic effects. The analysis of thermal stress has been intensively studied for multimode fibers$^{(1)}$ and the authors and co-wokers recently reported the stress distribution in a depressed inner cladding structure$^{(2)}$ . The compositions of the glass in the previous studies, however, have been restricted to conventional glass formers, such as GeO2, B2O3, P2O5, Fluorine. (omitted)

  • PDF

Residual Stresses Analysis due to Volumetric Changes in Long-term Autogenous Expansive Concrete (장기팽창성 콘크리트의 체적변화에 의한 잔류응력 해석)

  • Cha, Soo-Won;Jang, Bong-Seok;Oh, Byung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.617-625
    • /
    • 2009
  • This study is devoted to the problems of thermal and autogenous expansion stresses in order to avoid cracking using chemically prestressing method. The chemical prestress can be induced by autogenous expansion characteristics of MgO concrete made in specific burning temperature. The volume change induced cracking has great influence on the long-term durability and serviceability. To evaluate risk of cracking, the computer programs for analysis of thermal and autogenous expansion stresses were developed. In these 3-D finite element procedures, long-term autogenous expansive deformation is modeled and its resultant stress is calculated and then verified by comparison with manual calculation results. In this study, the stress development is related to thermal and autogenous expansive deformation. Using the developed program, residual stresses of MgO concrete were compared and analysed in the example From the numerical results it is found that long-term, and temperature dependent expansive concrete with light-burnt MgO is most effective in controlling the risk of cracking of mass concrete because it has high temperature for long period. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and autogenous expansion stresses in mass concrete structures with lightly burnt MgO.