DOI QR코드

DOI QR Code

Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes

팔라듐 합금 수소분리막의 내구성 향상

  • Kim, Chang-Hyun (Department of SDM (Semiconductor Display Mechatronics), Kyonggi University) ;
  • Lee, Jun-Hyung (Department of SDM (Semiconductor Display Mechatronics), Kyonggi University) ;
  • Jo, Sung-Tae (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Dong-Won (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2015.02.10
  • Accepted : 2015.02.23
  • Published : 2015.02.28

Abstract

Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

Keywords

References

  1. S. N. Paglieri and J. D. Way, Sep. Purif. Rev., 31(1) (2002) 68.
  2. Y. S Cheng, K. L. Yeung, J. Membr. Sci., 158 (1999) 127. https://doi.org/10.1016/S0376-7388(99)00009-5
  3. S. K. Ryi, J. S. Park, S. H. Kim, D. W. Kim, K. I. Cho, J. Membr. Sci., 318 (2008) 346. https://doi.org/10.1016/j.memsci.2008.02.055
  4. O. Hatlevik, S. K. Gade, M. K. keeling, P. M. Thoen, J. D. way, Sep. Purif. Technol., 73 (2010) 59. https://doi.org/10.1016/j.seppur.2009.10.020
  5. H. T. Hoang, H. D. Tong, F. C. Gielens, H. V. Jansen, M. C. Elwenspoek, Mat. Let., 58 (2004) 525. https://doi.org/10.1016/S0167-577X(03)00539-1
  6. H. B. Zhao, G. X. Xiong, G. V. Baron, Catalysis Today, 56 (2000) 89. https://doi.org/10.1016/S0920-5861(99)00266-7
  7. S. E. Nam, K. H. Lee, J. Membr. Sci., 170 (2000) 91. https://doi.org/10.1016/S0376-7388(99)00359-2
  8. C. S. Jun, K. H. Lee, J. Membr. Sci., 176 (2000) 121. https://doi.org/10.1016/S0376-7388(00)00438-5
  9. T. A. Peters, M. Stange, H. Klette, R. Bredesen, J. Membr. Sci., 316 (2008) 119. https://doi.org/10.1016/j.memsci.2007.08.056
  10. J. Y. Han, C. H. Kim, S. H. Kim, D. W. Kim, Adv. Mater. Sci. Eng. 438216 (2014) 10.
  11. J. Y. Han, S. R. Joo, J. H. Lee, D. G. Park, D. W. Kim, J. Kor. Inst. Surf. Eng., 46 (2013) 6.
  12. D. Wang, J. Tong, H. Xu, Y. Matsumura, Catal. Today, 93 (2004) 689.
  13. Y. M. Lin, M. H. Rei, Sep. Purif. Tech., 25 (2001) 87. https://doi.org/10.1016/S1383-5866(01)00094-6
  14. Y. She, J. Han, Y. H. Ma, Catal. Today, 67 (2001) 43. https://doi.org/10.1016/S0920-5861(01)00280-2
  15. J. Shu, A. Adnot, B. P. A. Grandjean, S. Kaliaguine, Thin Solid Films, 286 (1996) 72. https://doi.org/10.1016/S0040-6090(96)08544-6
  16. S. E. Nam, S. H. Lee, K. H. Lee, J. Membr. Sci., 153 (1999) 163. https://doi.org/10.1016/S0376-7388(98)00262-2
  17. N. Jemaa, J. Shu, S. Kaliaguine, B. P A. Grandjean, Ind. Eng. Chem. Res., 35 (1996) 973. https://doi.org/10.1021/ie950437t
  18. R. S. A. De lange, K. Keizer, A. J. Buurggraaf, J. Membr. Sci., 104 (1995) 81. https://doi.org/10.1016/0376-7388(95)00014-4
  19. D. W. Kim, Y. J. Park, S. M. Kang, H. S. An, J. S. Park, Jap. J. App. Phys., 49 (2010) 100208. https://doi.org/10.1143/JJAP.49.100208
  20. S. K. Ryi, N. Xu, A. Li, C. J. Lim, J. R. Grace, Int. J. Hydrogen Energy, 35 (2010) 2328. https://doi.org/10.1016/j.ijhydene.2010.01.054
  21. J. S. Park, D. W. Kim, K. R. Whang, C. B. Lee, S. M. Kang, B. I. Woo, H. S. An, B. C. Sim, Manufacturing Method for Palladium-Silver Alloy Diffusion Barrier Layer, Korea patent, 1012713940000 (2013).
  22. D. W. Kim, Y. J. Park, J. W. Moon, S. K. Ryi, J. S. Park, Thin Solid Films, 516 (2008) 3036. https://doi.org/10.1016/j.tsf.2007.11.126
  23. M. E. Ayturk, E. E. Engwall, Y. H. Ma, Ind. Eng. Chem. Res., 46 (2007) 4295. https://doi.org/10.1021/ie061677j
  24. M. Park, Metals Handbook 10th ed., Amer. Soc. Met., 3 (1992) 173.
  25. A. G. Knapton, Plat. Met. Rev., 21 (1997) 46.

Cited by

  1. Long-term dynamic stiffness of resilient materials in floating floor systems vol.133, 2017, https://doi.org/10.1016/j.conbuildmat.2016.11.119
  2. Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes vol.49, pp.3, 2016, https://doi.org/10.5695/JKISE.2016.49.3.286