• 제목/요약/키워드: Local optimization

검색결과 928건 처리시간 0.031초

잡음훼손에 적합한 평가함수와 복원기법을 이용한 유전적 연산자의 개선 (Imrovement of genetic operators using restoration method and evaluation function for noise degradation)

  • 김승목;조영창;이태홍
    • 전자공학회논문지S
    • /
    • 제34S권5호
    • /
    • pp.52-65
    • /
    • 1997
  • For the degradation of severe noise and ill-conditioned blur the optimization function has the solution spaces which have many local optima around global solution. General restoration methods such as inverse filtering or gradient methods are mainly dependent on the properties of degradation model and tend to be isolated into a local optima because their convergences are determined in the convex space. Hence we introduce genetic algorithm as a searching method which will search solutions beyond the convex spaces including local solutins. In this paper we introudce improved evaluation square error) and fitness value for gray scaled images. Finally we also proposed the local fine tunign of window size and visit number for delicate searching mechanism in the vicinity of th global solution. Through the experiental results we verified the effectiveness of the proposed genetic operators and evaluation function on noise reduction over the conventional ones, as well as the improved performance of local fine tuning.

  • PDF

Local motion planner for nonholonomic mobile robots

  • Hong, Sun-Gi;Choi, Changkyu;Shin, Jin-Ho;Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.530-533
    • /
    • 1995
  • This paper deals with the problem of motion planning for a unicycle-like robot. We present a simple local planner for unicycle model, based on an approximation of the desired configuration generated by local holonomic planner that ignores motion constraints. To guarantee a collision avoidance, we propose an inequality constraint, based on the motion analysis with the constant control input and time interval. Consequently, we formulate our problem as the constrained optimization problem and a feedback scheme based on local sensor information is established by simply solving this problem. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

콤플렉스 시스템의 신뢰도 최적화를 위한 발견적 합성해법의 개발 (A Hybrid-Heuristic for Reliability Optimization in Complex Systems)

  • 김재환
    • 해양환경안전학회지
    • /
    • 제5권2호
    • /
    • pp.87-97
    • /
    • 1999
  • This study is concerned with developing a hybrid heuristic algorithm for solving the redundancy optimization problem which is very important in system safety, This study develops a HH(Hybrid Heuristic) method combined with two strategies to alleviate the risks of being trapped at a local optimum. One of them is to construct the populations of the initial solutions randomly. The other is the additional search with SA(Simulated Annealing) method in final step. Computational results indicate that HH performs consistently better than the KY method proposed in Kim[8]. Therefore, the proposed HH is believed to an attractive to other heuristic methods.

  • PDF

제한조건을 가진 로봇 매니퓰레이터에 대한 최적 시간 운동 (Time-optimal motions of robotic manipulators with constraints)

  • 정일권;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.293-298
    • /
    • 1993
  • In this paper, methods for computing the time-optimal motion of a robotic manipulator are presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem can be reduced to a search for the time-optimal path in the n-dimensional position space. These paths are further optimized with a local path optimization to yield a global optimal solution. Time-optimal motion of a robot with an articulated arm is presented as an example.

  • PDF

Competitive Generation for Genetic Algorithms

  • Jung, Sung-Hoon
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.86-93
    • /
    • 2007
  • A new operation termed competitive generation in the processes of genetic algorithms is proposed for accelerating the optimization speed of genetic algorithms. The competitive generation devised by considering the competition of sperms for fertilization provides a good opportunity for the genetic algorithms to approach global optimum without falling into local optimum. Experimental results with typical problems showed that the genetic algorithms with competitive generation are superior to those without the competitive generation.

집적회로의 새로운 계층적 배치 기법 (A New Method for Hierarchical Placement of Integrated Circuits)

  • 김청희;신현철
    • 전자공학회논문지A
    • /
    • 제30A권6호
    • /
    • pp.58-65
    • /
    • 1993
  • In this research, we developed a new algorithm for hierarchical placement of integrated circuits. For efficient placement of a large circuit, the given circuit is recursively partitioned to form a hierarchy tree and then simulated-annealing-based placement method is applied at each level of the hierarchy to find a near optimum solution. During the placemtnt, global optimization is performed at high levels of the hierarchy and local optimization is performed at low levels. When compared with conventional placement methods, the new hierarchical placement method produced favorable results.

  • PDF

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • 제7권2호
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.

부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법 (Optimal solution search method by using modified local updating rule in ACS-subpath algorithm)

  • 홍석미;이승관
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.443-448
    • /
    • 2013
  • 개미군락시스템(Ant Colony System, ACS)은 조합 최적화 문제를 해결하기 위한 기법으로 생물학적 기반의 메타휴리스틱 접근법이다. 지나간 경로에 대하여 페로몬을 분비하고 통신 매개물로 사용하는 실제 개미들의 추적 행위를 기반으로 한다. 최적 경로를 찾기 위해서는 보다 다양한 에지들에 대한 탐색이 필요하다. 기존 개미군락시스템의 지역 갱신 규칙에서는 지나간 에지에 대하여 고정된 페로몬 갱신 값을 부여하고 있다. 그러나 본 논문에서는 현재 선택한 노드에 대한 이전 iteration 에서 방문한 총 빈도수를 고려한 페로몬 부여 방법을 지역갱신규칙에 사용하고자 한다. 탐색을 위해서는 부경로를 이용한 ACS알고리즘을 사용하였다. 보다 많은 정보를 탐색에 활용함으로써 기존의 방법에 비해 지역 최적화에 빠지지 않고 더 나은 해를 찾을 수 있다.

Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화 (Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm)

  • 이강석;김정희;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.