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Abstract

In this paper, methods for computing the time-optimal motion
of a robotic manipulator are presented that considers the
nonlinear manipulator dynamics, actuator constraints, joint
limits, and obstacles. The optimization problem can be
reduced to a search for the time-optimal path in the n-
dimensional position space. These paths are further optimized
with a local path optimization to yield a global optimal
solution. Path constrained time-optimal motion is also
described. Time-optimal motion of a robot with an articulated

arm is presented as an example.

1. Introduction

The productivity of robotic systems can be maximized by
planning robot motions to be time optimal. Optimal motions
can yield reduced cycle times, increased system utilization,
and thus improve the cost effectiveness of typical automated
manufacturing systems.

Using the optimality condition stated by the Pontryagin
maximum principle, the optimization problem can be
transformed to a 4n-dimensional two-point boundary value
problem (TPBVP) for an n-degree-of-freedom (DOF)
manipulator.

A dynamic programming search over the entire 2n-
dimensional state space can potentially yield the global
optimal trajectory among obstacles.

One approach to reduce the complexity of the problem
and to facilitate a practical realization of time-optimal motion
planning is to represent robot motions by a path and a
velocity profile along the path. This separation allows
reducing the optimization problem to two smaller problems:
1) computing the optimal velocity profile along a given path,
and 2) searching for the optimal path in the n-dimensional

position space. The local optimal path can be obtained with a

parameter optimization that iterates on path parameters, such
as the control points of a B spline [4].

In this paper, two time-optimal motions are presented.
Global search and solving TPBVP with an example of 2-link
planar arm robot. Global search requires local optimization
technique, path constrained time-optimal motion. In global
search, the optimization method is reduced to selecting the
best path out of a large (but finite) number of paths
represented by a tessellated position space, using a branch and
bound search and a series of lower bound estimates on the
traveling time along each path.

The local optimization uses a penalty function to ensure
that the optimal path does not approach obstacles or
manipulator joint limits, and this procedure requires
computing for path-constrained time-optimal motions.

An example of 2-link manipulator is presented and solved.
The validity of global search is discussed. The solution
represented in this paper is global time-optimal since the
TPBVP is solved directly.

2. Global Search
2.1 Work Space Representation

The workspace is represented by a uniform grid to reduce
the number of feasible paths between the end points to a final
set, and to facilitate a combinatorial search for the set of best
paths. Eliminating paths with loops and sharp turns
contributes to the computational efficiency of this approach
by drastically reducing the number of possible paths along the
grid.

A typical grid point x, is connected to its adjacent
neighbors x/, defined as

x/ =x +Ad, J=1.,3" -1 @
where d € R" is a vector of the typical grid sizes along the n

axes, and A € R™ is a diagonal matrix with the elements -1,
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0,or1.

Augmenting the position space with a direction state
allows representing the search by a directed graph with nodes
{a,._j} and edges {e..;}- A typical node {a,'] €x,,j= 1,4..,3""}
represents grid point x, and the jth direction of arrival to that
point. A typical edge e,, connects a node belonging to grid
point x; to its neighbor in the & direction.

The complexity of a graph search is proportional to the
number of edges. Here, the total number of nodes is
(3" - 1)m", where n is the number of states, and m is the
number of points defined along each state (assuming the same
tessellation for all states). The total number of edges is,
therefore, (3" —1)m", where ¢ is the number of departing
edges from each node. A state space grid for the same
problem would have m™ nodes and (3"-1)m™ edges.
Dividing the number of nodes of the augmented position
space grid yields an exponential improvement of m" /g in the
complexity of the search algorithm.

2.2 Obstacle Representation

To allow a search for paths in the Cartesian space, we define
obstacle shadows as regions formed by grid points that are
not accessible to the manipulator tip due to the presence of
obstacles. Obstacle shadows can be represented as a mapping
of the-configuration space obstacles to the Cartesian space.
Define A4 as the set of all reachable points in the Cartesian
space, mapped from the joint space B by the single valued
forward kinematics function FK(.):

A= {x|x = FK(y),y EB} (2.2)
It is convenient to subdivide the joint space B to subsets B,
consisting each of points for which a single valued inverse
kinematic solution exists. For two different points y,z€B
and y e B,
FK(y)= FK(z) onlyif z B, @23)
If B, maps to A, through (2.2), then the kinematic map
between B, and 4, is invertible.
A configuration space obstacle CO(b) due to obstacle &
is defined as [1]:

cofs)={»{r(»)Ns = o} @4)
where R(y) represents the set of points occupied by robot
links at joint positions y € B. We define the jth obstacle
shadow OS(b)l_ € A due to obstacle b as

OS(h)’ = {xlx = FK(y),y eCO(b)ﬂB,} 2.5)

2.3 Branch and Bound Search

We use a branch and bound search to select a set of best
paths from all possible ones between the end points. The
lower bounds are used to branch the search toward the most
promising subsets and to discard certain subsets from further
consideration. The search is terminated when each subset has
been shown to contain no better solution than the one already
at hand. The best solution found during this search is a global
optimum.

Key to this approach is the selection of appropriate
approximations of the cost function that are guaranteed to
produce lower bounds on the traveling time along a given
path or a set of paths. Several such approximations (called
tests) are presented that are based on the physical and
dynamic characteristics of the manipulator and its time-
optimal paths. The most conservative but efficient
approximations are used first, when the number of path
candidates is large, and the more accurate but

computationally expensive are used last.
2.4 Lower Bound Tests

We consider four tests for lower bound estimates on the
motion time along a given path. The tests are structures to
produce successively higher lower bounds so that the velocity
profile of every successive test is tangent and below the
previous velocity profile. Hence

LS SLSt =,
where 1 is the most conservative but computationally

efficient estimate, and 1, is the optimal traveling time along

opt
the path.

1) Maxinmum Speed Test :
The traveling time along a typical path is obtained by the

summation

h= T 26)

J7 max

where Ax, is the length of the jth grid segment along the path,
and ¥V, is the assigned maximum speed selected as the
highest speed along a velocity limit curve for a representative
path.

2) Velocity Limit Test :

We assume that the speed along the path follows the velocity
limit curve. The lower bound ¢, is obtained by the integral

1,01
12 = .[1. I—dA‘ (27)
where im(l) is the velocity limit curve.

3) Maximum Acceleration, Velocity Limit, Maximum
Deceleration Test :
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This test considers the actual speeds at the end points, which

without loss of generality are chosen to be zero.

R s Ay el

TR MA@ L)

where iﬂ and id are the speeds along the path during

maximum  acceleration and  maximum

deceleration,
respectively. A, and A, are the points along the path where

iﬂ and ia reach the velocity limit i,..-
4) Optimal Velocity Along the Path :

This test computes the time-optimal velocity profile along the
path. The optimal velocity profile is always below the limit
curve and in most cases tangents to the limit curve at a finite
number of points.

The tests outlined above are found most useful for
articulated manipulators in optimizing motion time.

2.5 Upper Bound

The upper bound ¢, is uséd to discard costly subsets early
in the branch and bound search. The upper bound ¢, is
selected below the optimal motion time along the best grid
path at hand 7 : ¢, <7+ , where € is a constant determined
by the shape of the cost function near the global minimum and
the grid size. This constant can be determined by evaluating

 the sensitivity of the cost function to path parameters.

2.6 Local Optimization

The optimization problem is formulated as an

unconstrained parameter optimization, using the control

points of cubic B splines as the optimization variables and the
motion time along a specified path as the cost function.
Obstacles are represented by penalty functions based on the
distance between the manipulator links and the obstacles. To
reduce the computation time and improve the convergence of
the local optimization, the number of control points is
reduced. The true optimum can be approached by
successively increasing the number of control points and
repeating the local optimization.

Assuming that all paths in a close neighborhood converge
to the same optimum, only the best path in each region can be
selected as a candidate for the local optimization. A region is
defined as a tube of some radius D, around a given path.
Starting with the best path obtained by the branch and bound
search, all paths in a tube around the best one are discarded.

The selection of D, is based on the anticipated size of the

convergence region around the global optimum, obtained by

the sensitivity test described earlier.

3. Path-Constrained Time-Optimal Motions

3.1 Parameterized Robot Dynamics with Input Torque
Constraints

Usually the dynamic equations take the form
u=J (@F +Ri +C(@i'd" +G(a) G.n
where u, is the ith generalized force, g’ is the ith generalized
coordinate, J, the inertia matrix, G, the gravitational force on
the ith joint, ij the coriolis force array, and Ry_ is the viscous

friction matrix. The Einstein summation convention has been
used, and all indexes run from one to n inclusive for an n-
degree-of-freedom robot.-
1t will be assumed that the path is given as a parameterized
curve. The curve is assumed to be given by a set of n
functions of a single parameter A, so that we are given
q=rf), 0<A<A (3.2)
where Ais a parameter for describing the desired path, and it
is assumed that the coordinates ¢' vary continuously with A
and that the path never retraces itself as A goes from O to

A_ . We differentiate ¢° with respect to time,
max

AL _dfy _dr
“dd d/l

where p1 = A. The equations of motion along the curve (i.e.,

(3.3)

the geometric path) then become

A=p (3.42)

- dr ! df’ daf’ df‘
u, J(A) p+J(A) dl’u +G(A)+Ru l;1+C(A)dA dl
(3.4b)

Note that if A is used to represent arc length along the path,
then ¢t and 1 are the velocity and the acceleration along the
path, respectively.

The state equations become

i = (3.52)
o 1 dar ar d'f dj‘
. J, (A)ﬁifi[ T Ty
A dx
LA dr df dr* ]
Rt Mot
(3.5b)

For evaluating the bounds on ft explicitly, (3.4b) can be
plugged in to the inequalities

w. <u<i  sothat
dr . arf df’ df* df’
o< S J +c L9 g P
u. <J; 7 /,H( e T +R" . H+G <u

(3.6)
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3.2 Optimal Trajectory

Given the form for the dynamic equations, we have the
minimum time path planning problem as follows.
Problem : Find x"=(X,u') and & by minimizing T
subject to (3.5a), (3.5b),
i

u sus<u , 0<AsA_, and the boundary conditions

HO) =, 1) =11, , AO)=0,and A1) =2, .
By defining the functions M, O, R, §, U, the state equations
can be rewritten in the following form.

A=n (3.72)

p:-‘A;[U—Qp’ - Ru-S5] (3.7b)

It is instructive to look at the system's behavior in the phase
plane. The equations of the phase-plane trajectories can be
obtained by dividing (j.7b) by (3.7a). This gives

du -
due g g1 2
@ _d _H_  ry_out-Ru- 38
o dr T, “M[ Qo -Ru-S]  (38)
dt

The total time 7 it takes to go from initial to final states is
e _ A, ﬂ _ L |
T—L de= | ‘md}.—jﬂ ;dl (3.9)

The constraints on f1 have two effects. One effect is to place

limits on the slope of the phase trajectory. The other is to
place limits on the value of u. To obtain the limits on
dp/dA, we simply divide the limits on [ by u, since
duldi=p/u.

With the velocity limit curve and the phase portrait
showing acceleration and deceleration vectors at each state,

we can determine optimal trajectories by a certain algorithm

{6].

4. Time-Optimal Motion of a Robot with an
Articulated Arm

4.1 The Model

The model is a planar 2-link manipulator. Since its

configuration is simple sketch of it is omitted. Joint 1 angle is
@ and joint 2 angle is y. Torques are MM, respectively.

With the state variables

x,(t) = 9() @.1)
x,(0) = o) (4.2)
x,(0) = W) (4.3)
x,(6) = W(1) (4.4)

and the control variables

u(0) =M (1) @.5)
u(1) = M'(l) (4.6)

and neglecting friction the equation of motion are
X =x, .7

i< Sl —u,+J (x, +x‘)2 sin(x,)}

2 JJ - J} cos (x,)
) .
~J {u, = Jox; sin(x,)} cos(x,) @38)
X =x, “4.9
. (U + I cos(x Nfw, —Jﬁxz’ sin(x,)}
K JJ,— J?cos’(x,)
—(J, + J cos(x)){n, —u, +J (x, +x,) sin(x,)} 4.10)

where

J, = mass moment of inertia of the link 1 w.r.t. the 1st axis

J, = mass moment of inertia of the link 2 w.r.t. the 2nd axis

J, = mass moment of inertia of the hand and the load w.r.t.
the position of the hand.

J,=1,+Im,

Jo=J, + 1 (m, +m)

Jo=1i(rym, +1m)

Jy=Jd+J,

m, = mass of the second link

m, = mass of the hand and the load

3

L

[, = lengths of the links 1 and 2, respectively
= distance between the center of gravity of the second link
and its driving axis

The control constraints are

@) m,_ (4.11)
|, ()] < M, .. 4.12)
For the simulation the following values are used.

J, = 1.6ni’kg J, = 0.43m’kg J, = 0.01m’kg
1=0.4m l,=0.25m r,=0.125m
m,=15kg  m, = 6kg M, =25Nm M, =9Nm

4.2 Time-Optimal Control Problem
The cost function is
Ja = [d 413
()= }dt (4.13)

The Hamiltonian function is
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H =1+ p (0)x,(0) + p, (0%, (D) + p,()x,(1) + p,(0%,(1) (4.14)

It'is of the form

H = f(x,p)+ h(x,pyu, + h(x,p)u, (4.15)
where
p,(0),i =1,---,4 are costate variables
0.8i15p, - (0.815+1.35
h(x,py = 2220~ CSIP (416
4.0424 - 1.8225cos’ x,
hy(x.p) = —(0.815 + 1.35cosx,)p, +(5.775 + 2.7¢cosx)p,

4.0424 - 1.8225cos’ x,

@17
The costate variables satisfy the linear adjoint differential
equations

p)=—-3H3x  fori=1l-4 (4.18)

Their boundary values at =0 and 7=T are free because the
initial and final states are fixed.

Using switching functions and applying Pontryagin's

minimum principle we can get control laws. We see that

except singular cases it becomes BangBang control.
4.3 Solutions

The solution will be discussed for the case where the robot
arm is stretched both in the initial and in the final position.

. x0)=¢ =0 (4.19)
x,(O)=y =0 (4.20)
x(T)=9¢,>0 421

(M) =y, =0,£2x, - (4.22)
x,(0)=x,(0)=x (T)=x(T)=0 (4.23)

For ¢, <0 the solution is symmetric so, the interesting region
of motion is 0 < @, < 7. In solving this problem the shooting

algorithm and trial and error methods were used.

There are 4 types of solution as followings.
Typel:y, =0
For ¢, (0 ~ 0.98 rad) , switching sequence for &, = (max,niin)
S, = (min,max,min) .
Where the optimal torque switch sequence is abridged.
Dpe2:y, =0
For ¢,(0.98 ~ 7 rad) , switching sequences for u, =
(max,min,max) , u, = (min,max,min)
Type3: vy, =-2n
For ¢,(0 ~ 176 rad) , switching sequence for u =
(max,min,max,min) , u, = (min,max)

Typed: y, =-2n

For ¢,(1.76 ~ = rad) , switching sequences for u =
(max,min} , u, = (min,max,min,max)
Comparing the numerical values of the types for
0 < ¢, <7, we can find global time-optimal solution.
Optimal Solution :
for ,(0~076rad) , Type !
for ¢, (0.76 ~ 1.76 rad) , Type 3

for 9, (176 ~ mrad) , Type 4

Fig. 1. ~ 4. show examples of solutions respectively using
plots for stroboscopic manipulator images. And phase plane
trajectories are shown in Fig. 5. ~ 6.

The solution by global search method is not presented here
and it needs a lot of computation. As stated earlier the
method finds the good paths at first, and after local
optimization which is path-constrained time-optimal motion
problem it finds the best solution.

Obviously the solutions we have shown is globally
optimal because we got them by solving the TPBVP directly.

So we can conclude that solutions by global search will be
the same as those we have shown.

5. Conclusions

At first, global search method has been presented for
computing the optimal motion of a manipulator, considering
its dynamics, actuator constraints, joint limits, and obstacles.
It is computationally efficient relative to other methods such
as a dynamic programming search in the state space. But
global search method requires relatively long time in
performing local optimization which requires computing of
path-constrained time-optimal motion. Then, path-constrained
motion has been presented.

We can get the global optimal solution by solving TPBVP
directly in a certain case. Example of 2-link manipulator case
has been solved and optimal solution was acquired. We could
see the validity of global search method intuitively.

For further study area we can say that a simpler and
computationally efficient algorithm is needed. And the
problem for the case of multi-robot that work together need
to be studied.
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Fig. 5. Phase plane trajectories for type I and fype 2.
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switching time for u,:0.113, 0.634 sec, T'=1.085 sec, I e N
N
v, =0.981 .
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Fig. 6. Phase plane trajectories for fype 3 and type 4.

where 0<A<l,u=2
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